|
a |
|
b/DEMO/web_ui_gradio.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 2, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [ |
|
|
8 |
{ |
|
|
9 |
"name": "stdout", |
|
|
10 |
"output_type": "stream", |
|
|
11 |
"text": [ |
|
|
12 |
"Dataset already downloaded in the local system...\n", |
|
|
13 |
"Running locally at: http://127.0.0.1:7860/\n", |
|
|
14 |
"Running on External URL: https://37678.gradio.app\n" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"data": { |
|
|
19 |
"text/html": [ |
|
|
20 |
"\n", |
|
|
21 |
" <iframe\n", |
|
|
22 |
" width=\"1000\"\n", |
|
|
23 |
" height=\"500\"\n", |
|
|
24 |
" src=\"http://127.0.0.1:7860/\"\n", |
|
|
25 |
" frameborder=\"0\"\n", |
|
|
26 |
" allowfullscreen\n", |
|
|
27 |
" ></iframe>\n", |
|
|
28 |
" " |
|
|
29 |
], |
|
|
30 |
"text/plain": [ |
|
|
31 |
"<IPython.lib.display.IFrame at 0x7fba2f2a2e90>" |
|
|
32 |
] |
|
|
33 |
}, |
|
|
34 |
"metadata": {}, |
|
|
35 |
"output_type": "display_data" |
|
|
36 |
}, |
|
|
37 |
{ |
|
|
38 |
"data": { |
|
|
39 |
"text/plain": [ |
|
|
40 |
"(<gradio.networking.serve_files_in_background.<locals>.HTTPServer at 0x7fba2cc15250>,\n", |
|
|
41 |
" 'http://127.0.0.1:7860/',\n", |
|
|
42 |
" 'https://37678.gradio.app')" |
|
|
43 |
] |
|
|
44 |
}, |
|
|
45 |
"execution_count": 2, |
|
|
46 |
"metadata": {}, |
|
|
47 |
"output_type": "execute_result" |
|
|
48 |
} |
|
|
49 |
], |
|
|
50 |
"source": [ |
|
|
51 |
"import os\n", |
|
|
52 |
"os.chdir('../')\n", |
|
|
53 |
"from DeepPurpose import utils\n", |
|
|
54 |
"from DeepPurpose import DTI as models\n", |
|
|
55 |
"import gradio\n", |
|
|
56 |
"\n", |
|
|
57 |
"model = models.model_pretrained(model = 'MPNN_CNN_BindingDB')\n", |
|
|
58 |
"\n", |
|
|
59 |
"def DTI_pred(drug, target):\n", |
|
|
60 |
" X_pred = utils.data_process(X_drug = [drug], X_target = [target], y = [0],\n", |
|
|
61 |
" drug_encoding = 'MPNN', target_encoding = 'CNN', \n", |
|
|
62 |
" split_method='no_split')\n", |
|
|
63 |
" y_pred = model.predict(X_pred)\n", |
|
|
64 |
" return str(y_pred[0])\n", |
|
|
65 |
"\n", |
|
|
66 |
"gradio.Interface(DTI_pred, \n", |
|
|
67 |
" [gradio.inputs.Textbox(lines = 5, label = \"Drug SMILES\"),\n", |
|
|
68 |
" gradio.inputs.Textbox(lines = 5, label = \"Target Amino Acid Sequence\")], \n", |
|
|
69 |
" gradio.outputs.Textbox(label = \"Predicted Affinity\")).launch(share=True)" |
|
|
70 |
] |
|
|
71 |
}, |
|
|
72 |
{ |
|
|
73 |
"cell_type": "code", |
|
|
74 |
"execution_count": null, |
|
|
75 |
"metadata": {}, |
|
|
76 |
"outputs": [], |
|
|
77 |
"source": [] |
|
|
78 |
} |
|
|
79 |
], |
|
|
80 |
"metadata": { |
|
|
81 |
"kernelspec": { |
|
|
82 |
"display_name": "Python [conda env:DeepPurpose]", |
|
|
83 |
"language": "python", |
|
|
84 |
"name": "conda-env-DeepPurpose-py" |
|
|
85 |
} |
|
|
86 |
}, |
|
|
87 |
"nbformat": 4, |
|
|
88 |
"nbformat_minor": 4 |
|
|
89 |
} |