--- a +++ b/DEMO/oneliner_repurpose_LCK_gene.ipynb @@ -0,0 +1,199 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import DeepPurpose.oneliner as oneliner\n", + "from DeepPurpose import dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "target, target_name = dataset.load_LCK()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'MGCGCSSHPEDDWMENIDVCENCHYPIVPLDGKGTLLIRNGSEVRDPLVTYEGSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILEQSGEWWKAQSLTTGQEGFIPFNFVAKANSLEPEPWFFKNLSRKDAERQLLAPGNTHGSFLIRESESTAGSFSLSVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPGLHELVRHYTNASDGLCTRLSRPCQTQKPQKPWWEDEWEVPRETLKLVERLGAGQFGEVWMGYYNGHTKVAVKSLKQGSMSPDAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMENGSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILVSDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTFTIKSDVWSFGILLTEIVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMRLCWKERPEDRPTFDYLRSVLEDFFTATEGQYQPQP'" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "target" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking if pretrained directory is valid...\n", + "Beginning to load the pretrained models...\n", + "Using pretrained model and making predictions...\n", + "repurposing...\n", + "in total: 6111 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 6111\n", + "drug encoding finished...\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "protein encoding finished...\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n", + "-------------\n", + "repurposing...\n", + "in total: 6111 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 6111\n", + "drug encoding finished...\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "protein encoding finished...\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n", + "-------------\n", + "repurposing...\n", + "in total: 6111 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 6111\n", + "drug encoding finished...\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "protein encoding finished...\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n", + "-------------\n", + "repurposing...\n", + "in total: 6111 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 6111\n", + "drug encoding finished...\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n", + "protein encoding finished...\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n", + "-------------\n", + "repurposing...\n", + "in total: 6111 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 6111\n", + "rdkit not found this smiles: [Y+3] convert to all 1 features\n", + "rdkit not found this smiles: [K].I convert to all 1 features\n", + "drug encoding finished...\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n", + "protein encoding finished...\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n", + "-------------\n", + "repurposing...\n", + "in total: 6111 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 6111\n", + "drug encoding finished...\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "protein encoding finished...\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 6 with drug encoding Transformer and target encoding CNN are done...\n", + "-------------\n", + "models prediction finished...\n", + "aggregating results...\n", + "---------------\n", + "Drug Repurposing Result for Tyrosine-protein kinase Lck\n", + "+------+-------------+-----------------------------+---------------+\n", + "| Rank | Drug Name | Target Name | Binding Score |\n", + "+------+-------------+-----------------------------+---------------+\n", + "| 1 | 441336.0 | Tyrosine-protein kinase Lck | 3.39 |\n", + "| 2 | 6917849.0 | Tyrosine-protein kinase Lck | 6.10 |\n", + "| 3 | 23947600.0 | Tyrosine-protein kinase Lck | 8.76 |\n", + "| 4 | 27924.0 | Tyrosine-protein kinase Lck | 9.56 |\n", + "| 5 | 445643.0 | Tyrosine-protein kinase Lck | 13.61 |\n", + "| 6 | 16490.0 | Tyrosine-protein kinase Lck | 13.77 |\n", + "| 7 | 13109.0 | Tyrosine-protein kinase Lck | 14.80 |\n", + "| 8 | 6230.0 | Tyrosine-protein kinase Lck | 18.10 |\n", + "| 9 | 11180808.0 | Tyrosine-protein kinase Lck | 18.32 |\n", + "| 10 | 124079495.0 | Tyrosine-protein kinase Lck | 19.91 |\n", + "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n", + "\n" + ] + } + ], + "source": [ + "oneliner.repurpose(target = target, \n", + " target_name = target_name, \n", + " save_dir = './save_folder',\n", + " pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}