a b/DEMO/oneliner_repurpose_COVID19_Pretrained.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import os\n",
10
    "os.chdir('../')"
11
   ]
12
  },
13
  {
14
   "cell_type": "code",
15
   "execution_count": 2,
16
   "metadata": {},
17
   "outputs": [],
18
   "source": [
19
    "import DeepPurpose.oneliner as oneliner\n",
20
    "from DeepPurpose import dataset\n",
21
    "import time"
22
   ]
23
  },
24
  {
25
   "cell_type": "code",
26
   "execution_count": 3,
27
   "metadata": {},
28
   "outputs": [],
29
   "source": [
30
    "X_repurpose, drug_names, drug_CID = dataset.load_antiviral_drugs('./data')"
31
   ]
32
  },
33
  {
34
   "cell_type": "code",
35
   "execution_count": 4,
36
   "metadata": {
37
    "scrolled": false
38
   },
39
   "outputs": [
40
    {
41
     "name": "stdout",
42
     "output_type": "stream",
43
     "text": [
44
      "Loading customized repurposing dataset...\n",
45
      "Checking if pretrained directory is valid...\n",
46
      "Beginning to load the pretrained models...\n",
47
      "Using pretrained model and making predictions...\n",
48
      "repurposing...\n",
49
      "in total: 82 drug-target pairs\n",
50
      "encoding drug...\n",
51
      "unique drugs: 81\n",
52
      "drug encoding finished...\n",
53
      "encoding protein...\n",
54
      "unique target sequence: 1\n",
55
      "protein encoding finished...\n",
56
      "Done.\n",
57
      "predicting...\n",
58
      "---------------\n",
59
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
60
      "-------------\n",
61
      "repurposing...\n",
62
      "in total: 82 drug-target pairs\n",
63
      "encoding drug...\n",
64
      "unique drugs: 81\n",
65
      "drug encoding finished...\n",
66
      "encoding protein...\n",
67
      "unique target sequence: 1\n",
68
      "protein encoding finished...\n",
69
      "Done.\n",
70
      "predicting...\n",
71
      "---------------\n",
72
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
73
      "-------------\n",
74
      "repurposing...\n",
75
      "in total: 82 drug-target pairs\n",
76
      "encoding drug...\n",
77
      "unique drugs: 81\n",
78
      "drug encoding finished...\n",
79
      "encoding protein...\n",
80
      "unique target sequence: 1\n",
81
      "protein encoding finished...\n",
82
      "Done.\n",
83
      "predicting...\n",
84
      "---------------\n",
85
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
86
      "-------------\n",
87
      "repurposing...\n",
88
      "in total: 82 drug-target pairs\n",
89
      "encoding drug...\n",
90
      "unique drugs: 81\n",
91
      "drug encoding finished...\n",
92
      "encoding protein...\n",
93
      "unique target sequence: 1\n",
94
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
95
      "protein encoding finished...\n",
96
      "Done.\n",
97
      "predicting...\n",
98
      "---------------\n",
99
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
100
      "-------------\n",
101
      "repurposing...\n",
102
      "in total: 82 drug-target pairs\n",
103
      "encoding drug...\n",
104
      "unique drugs: 81\n",
105
      "drug encoding finished...\n",
106
      "encoding protein...\n",
107
      "unique target sequence: 1\n",
108
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
109
      "protein encoding finished...\n",
110
      "Done.\n",
111
      "predicting...\n",
112
      "---------------\n",
113
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
114
      "-------------\n",
115
      "models prediction finished...\n",
116
      "aggregating results...\n",
117
      "---------------\n",
118
      "Drug Repurposing Result for SARS-CoV2 3CL Protease\n",
119
      "+------+----------------------+------------------------+---------------+\n",
120
      "| Rank |      Drug Name       |      Target Name       | Binding Score |\n",
121
      "+------+----------------------+------------------------+---------------+\n",
122
      "|  1   |      Sofosbuvir      | SARS-CoV2 3CL Protease |     360.22    |\n",
123
      "|  2   |     Daclatasvir      | SARS-CoV2 3CL Protease |     424.06    |\n",
124
      "|  3   |      Vicriviroc      | SARS-CoV2 3CL Protease |     623.78    |\n",
125
      "|  4   |      Efavirenz       | SARS-CoV2 3CL Protease |     768.33    |\n",
126
      "|  5   |      Simeprevir      | SARS-CoV2 3CL Protease |     781.29    |\n",
127
      "|  6   |      Etravirine      | SARS-CoV2 3CL Protease |     809.88    |\n",
128
      "|  7   |      Amantadine      | SARS-CoV2 3CL Protease |     826.28    |\n",
129
      "|  8   |      Letermovir      | SARS-CoV2 3CL Protease |     891.66    |\n",
130
      "|  9   |     Rilpivirine      | SARS-CoV2 3CL Protease |     929.63    |\n",
131
      "|  10  |      Ritonavir       | SARS-CoV2 3CL Protease |     941.13    |\n",
132
      "|  11  |      Darunavir       | SARS-CoV2 3CL Protease |     944.10    |\n",
133
      "|  12  |      Maraviroc       | SARS-CoV2 3CL Protease |     945.22    |\n",
134
      "|  13  |      Lopinavir       | SARS-CoV2 3CL Protease |     945.71    |\n",
135
      "|  14  |    Fosamprenavir     | SARS-CoV2 3CL Protease |     964.99    |\n",
136
      "|  15  |      Peramivir       | SARS-CoV2 3CL Protease |    1050.64    |\n",
137
      "|  16  |     Grazoprevir      | SARS-CoV2 3CL Protease |    1202.52    |\n",
138
      "|  17  |      Amprenavir      | SARS-CoV2 3CL Protease |    1204.21    |\n",
139
      "|  18  |      Telaprevir      | SARS-CoV2 3CL Protease |    1212.97    |\n",
140
      "|  19  |     Elvitegravir     | SARS-CoV2 3CL Protease |    1220.48    |\n",
141
      "|  20  |      Tenofovir       | SARS-CoV2 3CL Protease |    1250.70    |\n",
142
      "|  21  |       Descovy        | SARS-CoV2 3CL Protease |    1250.70    |\n",
143
      "|  22  |      Atazanavir      | SARS-CoV2 3CL Protease |    1348.65    |\n",
144
      "|  23  |     Tromantadine     | SARS-CoV2 3CL Protease |    1380.71    |\n",
145
      "|  24  |      Nelfinavir      | SARS-CoV2 3CL Protease |    1451.43    |\n",
146
      "|  25  |       Abacavir       | SARS-CoV2 3CL Protease |    1464.89    |\n",
147
      "|  26  | Tenofovir_disoproxil | SARS-CoV2 3CL Protease |    1571.85    |\n",
148
      "|  27  |     Dolutegravir     | SARS-CoV2 3CL Protease |    1672.82    |\n",
149
      "|  28  |     Delavirdine      | SARS-CoV2 3CL Protease |    1691.47    |\n",
150
      "|  29  |      Saquinavir      | SARS-CoV2 3CL Protease |    1763.63    |\n",
151
      "|  30  |     Raltegravir      | SARS-CoV2 3CL Protease |    1854.40    |\n",
152
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
153
      "\n",
154
      "Time lapse:6.697427749633789\n"
155
     ]
156
    }
157
   ],
158
   "source": [
159
    "start = time.time()\n",
160
    "target, target_name = dataset.load_SARS_CoV2_Protease_3CL()\n",
161
    "oneliner.repurpose(target = target, \n",
162
    "                    target_name = target_name, \n",
163
    "                    X_repurpose = X_repurpose,\n",
164
    "                    drug_names = drug_names,\n",
165
    "                    save_dir = './save_folder',\n",
166
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
167
    "                    agg = 'mean')\n",
168
    "end = time.time()\n",
169
    "print('Time lapse:' + str(end - start))"
170
   ]
171
  },
172
  {
173
   "cell_type": "code",
174
   "execution_count": 5,
175
   "metadata": {
176
    "scrolled": false
177
   },
178
   "outputs": [
179
    {
180
     "name": "stdout",
181
     "output_type": "stream",
182
     "text": [
183
      "Loading customized repurposing dataset...\n",
184
      "Checking if pretrained directory is valid...\n",
185
      "Beginning to load the pretrained models...\n",
186
      "Using pretrained model and making predictions...\n",
187
      "repurposing...\n",
188
      "in total: 82 drug-target pairs\n",
189
      "encoding drug...\n",
190
      "unique drugs: 81\n",
191
      "drug encoding finished...\n",
192
      "encoding protein...\n",
193
      "unique target sequence: 1\n",
194
      "protein encoding finished...\n",
195
      "Done.\n",
196
      "predicting...\n",
197
      "---------------\n",
198
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
199
      "-------------\n",
200
      "repurposing...\n",
201
      "in total: 82 drug-target pairs\n",
202
      "encoding drug...\n",
203
      "unique drugs: 81\n",
204
      "drug encoding finished...\n",
205
      "encoding protein...\n",
206
      "unique target sequence: 1\n",
207
      "protein encoding finished...\n",
208
      "Done.\n",
209
      "predicting...\n",
210
      "---------------\n",
211
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
212
      "-------------\n",
213
      "repurposing...\n",
214
      "in total: 82 drug-target pairs\n",
215
      "encoding drug...\n",
216
      "unique drugs: 81\n",
217
      "drug encoding finished...\n",
218
      "encoding protein...\n",
219
      "unique target sequence: 1\n",
220
      "protein encoding finished...\n",
221
      "Done.\n",
222
      "predicting...\n",
223
      "---------------\n",
224
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
225
      "-------------\n",
226
      "repurposing...\n",
227
      "in total: 82 drug-target pairs\n",
228
      "encoding drug...\n",
229
      "unique drugs: 81\n",
230
      "drug encoding finished...\n",
231
      "encoding protein...\n",
232
      "unique target sequence: 1\n",
233
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
234
      "protein encoding finished...\n",
235
      "Done.\n",
236
      "predicting...\n",
237
      "---------------\n",
238
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
239
      "-------------\n",
240
      "repurposing...\n",
241
      "in total: 82 drug-target pairs\n",
242
      "encoding drug...\n",
243
      "unique drugs: 81\n",
244
      "drug encoding finished...\n",
245
      "encoding protein...\n",
246
      "unique target sequence: 1\n",
247
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
248
      "protein encoding finished...\n",
249
      "Done.\n",
250
      "predicting...\n",
251
      "---------------\n",
252
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
253
      "-------------\n",
254
      "models prediction finished...\n",
255
      "aggregating results...\n",
256
      "---------------\n",
257
      "Drug Repurposing Result for SARS-CoV2 3CL Protease\n",
258
      "+------+----------------------+------------------------+---------------+\n",
259
      "| Rank |      Drug Name       |      Target Name       | Binding Score |\n",
260
      "+------+----------------------+------------------------+---------------+\n",
261
      "|  1   |      Lopinavir       | SARS-CoV2 3CL Protease |      0.30     |\n",
262
      "|  2   |      Darunavir       | SARS-CoV2 3CL Protease |      0.37     |\n",
263
      "|  3   |      Amprenavir      | SARS-CoV2 3CL Protease |      1.31     |\n",
264
      "|  4   |      Tipranavir      | SARS-CoV2 3CL Protease |      1.35     |\n",
265
      "|  5   |      Baloxavir       | SARS-CoV2 3CL Protease |      1.69     |\n",
266
      "|  6   |      Boceprevir      | SARS-CoV2 3CL Protease |      2.06     |\n",
267
      "|  7   |     Glecaprevir      | SARS-CoV2 3CL Protease |      2.22     |\n",
268
      "|  8   |     Oseltamivir      | SARS-CoV2 3CL Protease |      2.56     |\n",
269
      "|  9   |      Telaprevir      | SARS-CoV2 3CL Protease |      2.70     |\n",
270
      "|  10  |      Nelfinavir      | SARS-CoV2 3CL Protease |      3.56     |\n",
271
      "|  11  |      Maraviroc       | SARS-CoV2 3CL Protease |      4.50     |\n",
272
      "|  12  |     Daclatasvir      | SARS-CoV2 3CL Protease |      5.09     |\n",
273
      "|  13  |      Vicriviroc      | SARS-CoV2 3CL Protease |      7.62     |\n",
274
      "|  14  |      Etravirine      | SARS-CoV2 3CL Protease |      8.80     |\n",
275
      "|  15  |    Fosamprenavir     | SARS-CoV2 3CL Protease |      9.91     |\n",
276
      "|  16  |      Entecavir       | SARS-CoV2 3CL Protease |     10.25     |\n",
277
      "|  17  |      Atazanavir      | SARS-CoV2 3CL Protease |     10.41     |\n",
278
      "|  18  |      Foscarnet       | SARS-CoV2 3CL Protease |     11.34     |\n",
279
      "|  19  |      Simeprevir      | SARS-CoV2 3CL Protease |     11.76     |\n",
280
      "|  20  |     Rilpivirine      | SARS-CoV2 3CL Protease |     11.95     |\n",
281
      "|  21  |       Abacavir       | SARS-CoV2 3CL Protease |     12.70     |\n",
282
      "|  22  |      Amantadine      | SARS-CoV2 3CL Protease |     13.24     |\n",
283
      "|  23  |      Pleconaril      | SARS-CoV2 3CL Protease |     13.74     |\n",
284
      "|  24  |      Saquinavir      | SARS-CoV2 3CL Protease |     19.87     |\n",
285
      "|  25  |      Sofosbuvir      | SARS-CoV2 3CL Protease |     20.28     |\n",
286
      "|  26  |     Delavirdine      | SARS-CoV2 3CL Protease |     20.65     |\n",
287
      "|  27  |     Raltegravir      | SARS-CoV2 3CL Protease |     22.45     |\n",
288
      "|  28  |      Tenofovir       | SARS-CoV2 3CL Protease |     25.22     |\n",
289
      "|  29  |       Descovy        | SARS-CoV2 3CL Protease |     25.22     |\n",
290
      "|  30  |      Peramivir       | SARS-CoV2 3CL Protease |     25.57     |\n",
291
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
292
      "\n"
293
     ]
294
    }
295
   ],
296
   "source": [
297
    "oneliner.repurpose(target = target, \n",
298
    "                    target_name = target_name, \n",
299
    "                    X_repurpose = X_repurpose,\n",
300
    "                    drug_names = drug_names,\n",
301
    "                    save_dir = './save_folder',\n",
302
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
303
    "                    agg = 'max_effect')"
304
   ]
305
  },
306
  {
307
   "cell_type": "code",
308
   "execution_count": 6,
309
   "metadata": {
310
    "scrolled": false
311
   },
312
   "outputs": [
313
    {
314
     "name": "stdout",
315
     "output_type": "stream",
316
     "text": [
317
      "Loading customized repurposing dataset...\n",
318
      "Checking if pretrained directory is valid...\n",
319
      "Beginning to load the pretrained models...\n",
320
      "Using pretrained model and making predictions...\n",
321
      "repurposing...\n",
322
      "in total: 82 drug-target pairs\n",
323
      "encoding drug...\n",
324
      "unique drugs: 81\n",
325
      "drug encoding finished...\n",
326
      "encoding protein...\n",
327
      "unique target sequence: 1\n",
328
      "protein encoding finished...\n",
329
      "Done.\n",
330
      "predicting...\n",
331
      "---------------\n",
332
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
333
      "-------------\n",
334
      "repurposing...\n",
335
      "in total: 82 drug-target pairs\n",
336
      "encoding drug...\n",
337
      "unique drugs: 81\n",
338
      "drug encoding finished...\n",
339
      "encoding protein...\n",
340
      "unique target sequence: 1\n",
341
      "protein encoding finished...\n",
342
      "Done.\n",
343
      "predicting...\n",
344
      "---------------\n",
345
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
346
      "-------------\n",
347
      "repurposing...\n",
348
      "in total: 82 drug-target pairs\n",
349
      "encoding drug...\n",
350
      "unique drugs: 81\n",
351
      "drug encoding finished...\n",
352
      "encoding protein...\n",
353
      "unique target sequence: 1\n",
354
      "protein encoding finished...\n",
355
      "Done.\n",
356
      "predicting...\n",
357
      "---------------\n",
358
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
359
      "-------------\n",
360
      "repurposing...\n",
361
      "in total: 82 drug-target pairs\n",
362
      "encoding drug...\n",
363
      "unique drugs: 81\n",
364
      "drug encoding finished...\n",
365
      "encoding protein...\n",
366
      "unique target sequence: 1\n",
367
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
368
      "protein encoding finished...\n",
369
      "Done.\n",
370
      "predicting...\n",
371
      "---------------\n",
372
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
373
      "-------------\n",
374
      "repurposing...\n",
375
      "in total: 82 drug-target pairs\n",
376
      "encoding drug...\n",
377
      "unique drugs: 81\n",
378
      "drug encoding finished...\n",
379
      "encoding protein...\n",
380
      "unique target sequence: 1\n",
381
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
382
      "protein encoding finished...\n",
383
      "Done.\n",
384
      "predicting...\n",
385
      "---------------\n",
386
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
387
      "-------------\n",
388
      "models prediction finished...\n",
389
      "aggregating results...\n",
390
      "---------------\n",
391
      "Drug Repurposing Result for SARS-CoV2 3CL Protease\n",
392
      "+------+----------------------+------------------------+---------------+\n",
393
      "| Rank |      Drug Name       |      Target Name       | Binding Score |\n",
394
      "+------+----------------------+------------------------+---------------+\n",
395
      "|  1   |      Sofosbuvir      | SARS-CoV2 3CL Protease |     190.25    |\n",
396
      "|  2   |     Daclatasvir      | SARS-CoV2 3CL Protease |     214.58    |\n",
397
      "|  3   |      Vicriviroc      | SARS-CoV2 3CL Protease |     315.70    |\n",
398
      "|  4   |      Simeprevir      | SARS-CoV2 3CL Protease |     396.53    |\n",
399
      "|  5   |      Etravirine      | SARS-CoV2 3CL Protease |     409.34    |\n",
400
      "|  6   |      Amantadine      | SARS-CoV2 3CL Protease |     419.76    |\n",
401
      "|  7   |      Letermovir      | SARS-CoV2 3CL Protease |     460.28    |\n",
402
      "|  8   |     Rilpivirine      | SARS-CoV2 3CL Protease |     470.79    |\n",
403
      "|  9   |      Darunavir       | SARS-CoV2 3CL Protease |     472.24    |\n",
404
      "|  10  |      Lopinavir       | SARS-CoV2 3CL Protease |     473.01    |\n",
405
      "|  11  |      Maraviroc       | SARS-CoV2 3CL Protease |     474.86    |\n",
406
      "|  12  |    Fosamprenavir     | SARS-CoV2 3CL Protease |     487.45    |\n",
407
      "|  13  |      Ritonavir       | SARS-CoV2 3CL Protease |     492.19    |\n",
408
      "|  14  |      Efavirenz       | SARS-CoV2 3CL Protease |     513.81    |\n",
409
      "|  15  |      Peramivir       | SARS-CoV2 3CL Protease |     538.11    |\n",
410
      "|  16  |      Amprenavir      | SARS-CoV2 3CL Protease |     602.76    |\n",
411
      "|  17  |      Telaprevir      | SARS-CoV2 3CL Protease |     607.84    |\n",
412
      "|  18  |     Grazoprevir      | SARS-CoV2 3CL Protease |     632.54    |\n",
413
      "|  19  |      Tenofovir       | SARS-CoV2 3CL Protease |     637.96    |\n",
414
      "|  20  |       Descovy        | SARS-CoV2 3CL Protease |     637.96    |\n",
415
      "|  21  |     Elvitegravir     | SARS-CoV2 3CL Protease |     654.94    |\n",
416
      "|  22  |      Atazanavir      | SARS-CoV2 3CL Protease |     679.53    |\n",
417
      "|  23  |      Nelfinavir      | SARS-CoV2 3CL Protease |     727.49    |\n",
418
      "|  24  |       Abacavir       | SARS-CoV2 3CL Protease |     738.80    |\n",
419
      "|  25  | Tenofovir_disoproxil | SARS-CoV2 3CL Protease |     828.19    |\n",
420
      "|  26  |     Delavirdine      | SARS-CoV2 3CL Protease |     856.06    |\n",
421
      "|  27  |     Tromantadine     | SARS-CoV2 3CL Protease |     863.40    |\n",
422
      "|  28  |      Saquinavir      | SARS-CoV2 3CL Protease |     891.75    |\n",
423
      "|  29  |     Dolutegravir     | SARS-CoV2 3CL Protease |     920.32    |\n",
424
      "|  30  |     Raltegravir      | SARS-CoV2 3CL Protease |     938.42    |\n",
425
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
426
      "\n"
427
     ]
428
    }
429
   ],
430
   "source": [
431
    "oneliner.repurpose(target = target, \n",
432
    "                    target_name = target_name, \n",
433
    "                    X_repurpose = X_repurpose,\n",
434
    "                    drug_names = drug_names,\n",
435
    "                    save_dir = './save_folder',\n",
436
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
437
    "                    agg = 'agg_mean_max')"
438
   ]
439
  },
440
  {
441
   "cell_type": "code",
442
   "execution_count": 7,
443
   "metadata": {
444
    "scrolled": false
445
   },
446
   "outputs": [
447
    {
448
     "name": "stdout",
449
     "output_type": "stream",
450
     "text": [
451
      "Loading customized repurposing dataset...\n",
452
      "Checking if pretrained directory is valid...\n",
453
      "Beginning to load the pretrained models...\n",
454
      "Using pretrained model and making predictions...\n",
455
      "repurposing...\n",
456
      "in total: 82 drug-target pairs\n",
457
      "encoding drug...\n",
458
      "unique drugs: 81\n",
459
      "drug encoding finished...\n",
460
      "encoding protein...\n",
461
      "unique target sequence: 1\n",
462
      "protein encoding finished...\n",
463
      "Done.\n",
464
      "predicting...\n",
465
      "---------------\n",
466
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
467
      "-------------\n",
468
      "repurposing...\n",
469
      "in total: 82 drug-target pairs\n",
470
      "encoding drug...\n",
471
      "unique drugs: 81\n",
472
      "drug encoding finished...\n",
473
      "encoding protein...\n",
474
      "unique target sequence: 1\n",
475
      "protein encoding finished...\n",
476
      "Done.\n",
477
      "predicting...\n",
478
      "---------------\n",
479
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
480
      "-------------\n",
481
      "repurposing...\n",
482
      "in total: 82 drug-target pairs\n",
483
      "encoding drug...\n",
484
      "unique drugs: 81\n",
485
      "drug encoding finished...\n",
486
      "encoding protein...\n",
487
      "unique target sequence: 1\n",
488
      "protein encoding finished...\n",
489
      "Done.\n",
490
      "predicting...\n",
491
      "---------------\n",
492
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
493
      "-------------\n",
494
      "repurposing...\n",
495
      "in total: 82 drug-target pairs\n",
496
      "encoding drug...\n",
497
      "unique drugs: 81\n",
498
      "drug encoding finished...\n",
499
      "encoding protein...\n",
500
      "unique target sequence: 1\n",
501
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
502
      "protein encoding finished...\n",
503
      "Done.\n",
504
      "predicting...\n",
505
      "---------------\n",
506
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
507
      "-------------\n",
508
      "repurposing...\n",
509
      "in total: 82 drug-target pairs\n",
510
      "encoding drug...\n",
511
      "unique drugs: 81\n",
512
      "drug encoding finished...\n",
513
      "encoding protein...\n",
514
      "unique target sequence: 1\n",
515
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
516
      "protein encoding finished...\n",
517
      "Done.\n",
518
      "predicting...\n",
519
      "---------------\n",
520
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
521
      "-------------\n",
522
      "models prediction finished...\n",
523
      "aggregating results...\n",
524
      "---------------\n",
525
      "Drug Repurposing Result for RNA_polymerase_SARS_CoV2\n",
526
      "+------+----------------------+--------------------------+---------------+\n",
527
      "| Rank |      Drug Name       |       Target Name        | Binding Score |\n",
528
      "+------+----------------------+--------------------------+---------------+\n",
529
      "|  1   |     Daclatasvir      | RNA_polymerase_SARS_CoV2 |     380.69    |\n",
530
      "|  2   |      Vicriviroc      | RNA_polymerase_SARS_CoV2 |     404.62    |\n",
531
      "|  3   |      Simeprevir      | RNA_polymerase_SARS_CoV2 |     408.03    |\n",
532
      "|  4   |      Sofosbuvir      | RNA_polymerase_SARS_CoV2 |     647.43    |\n",
533
      "|  5   |      Etravirine      | RNA_polymerase_SARS_CoV2 |     735.35    |\n",
534
      "|  6   |      Atazanavir      | RNA_polymerase_SARS_CoV2 |     770.73    |\n",
535
      "|  7   |     Rilpivirine      | RNA_polymerase_SARS_CoV2 |     906.63    |\n",
536
      "|  8   |      Maraviroc       | RNA_polymerase_SARS_CoV2 |     911.97    |\n",
537
      "|  9   |      Letermovir      | RNA_polymerase_SARS_CoV2 |     932.10    |\n",
538
      "|  10  |      Lopinavir       | RNA_polymerase_SARS_CoV2 |     936.25    |\n",
539
      "|  11  |      Darunavir       | RNA_polymerase_SARS_CoV2 |     936.39    |\n",
540
      "|  12  |    Fosamprenavir     | RNA_polymerase_SARS_CoV2 |     945.02    |\n",
541
      "|  13  |      Peramivir       | RNA_polymerase_SARS_CoV2 |     964.85    |\n",
542
      "|  14  |      Telaprevir      | RNA_polymerase_SARS_CoV2 |    1123.34    |\n",
543
      "|  15  |      Amprenavir      | RNA_polymerase_SARS_CoV2 |    1202.55    |\n",
544
      "|  16  |     Grazoprevir      | RNA_polymerase_SARS_CoV2 |    1236.20    |\n",
545
      "|  17  |      Nelfinavir      | RNA_polymerase_SARS_CoV2 |    1252.00    |\n",
546
      "|  18  |      Boceprevir      | RNA_polymerase_SARS_CoV2 |    1391.99    |\n",
547
      "|  19  |     Raltegravir      | RNA_polymerase_SARS_CoV2 |    1552.78    |\n",
548
      "|  20  |       Abacavir       | RNA_polymerase_SARS_CoV2 |    1660.44    |\n",
549
      "|  21  |     Dolutegravir     | RNA_polymerase_SARS_CoV2 |    1718.55    |\n",
550
      "|  22  |     Delavirdine      | RNA_polymerase_SARS_CoV2 |    1746.95    |\n",
551
      "|  23  |      Doravirine      | RNA_polymerase_SARS_CoV2 |    1763.03    |\n",
552
      "|  24  |     Elvitegravir     | RNA_polymerase_SARS_CoV2 |    1821.02    |\n",
553
      "|  25  |      Saquinavir      | RNA_polymerase_SARS_CoV2 |    1829.28    |\n",
554
      "|  26  |     Enfuvirtide      | RNA_polymerase_SARS_CoV2 |    2177.03    |\n",
555
      "|  27  |      Pleconaril      | RNA_polymerase_SARS_CoV2 |    2266.15    |\n",
556
      "|  28  |     Glecaprevir      | RNA_polymerase_SARS_CoV2 |    2306.74    |\n",
557
      "|  29  |      Amantadine      | RNA_polymerase_SARS_CoV2 |    2434.83    |\n",
558
      "|  30  |      Efavirenz       | RNA_polymerase_SARS_CoV2 |    2617.99    |\n",
559
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
560
      "\n"
561
     ]
562
    }
563
   ],
564
   "source": [
565
    "target, target_name = dataset.load_SARS_CoV2_RNA_polymerase()\n",
566
    "oneliner.repurpose(target = target, \n",
567
    "                    target_name = target_name, \n",
568
    "                    X_repurpose = X_repurpose,\n",
569
    "                    drug_names = drug_names,\n",
570
    "                    save_dir = './save_folder',\n",
571
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
572
    "                    agg = 'mean')"
573
   ]
574
  },
575
  {
576
   "cell_type": "code",
577
   "execution_count": 8,
578
   "metadata": {
579
    "scrolled": false
580
   },
581
   "outputs": [
582
    {
583
     "name": "stdout",
584
     "output_type": "stream",
585
     "text": [
586
      "Loading customized repurposing dataset...\n",
587
      "Checking if pretrained directory is valid...\n",
588
      "Beginning to load the pretrained models...\n",
589
      "Using pretrained model and making predictions...\n",
590
      "repurposing...\n",
591
      "in total: 82 drug-target pairs\n",
592
      "encoding drug...\n",
593
      "unique drugs: 81\n",
594
      "drug encoding finished...\n",
595
      "encoding protein...\n",
596
      "unique target sequence: 1\n",
597
      "protein encoding finished...\n",
598
      "Done.\n",
599
      "predicting...\n",
600
      "---------------\n",
601
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
602
      "-------------\n",
603
      "repurposing...\n",
604
      "in total: 82 drug-target pairs\n",
605
      "encoding drug...\n",
606
      "unique drugs: 81\n",
607
      "drug encoding finished...\n",
608
      "encoding protein...\n",
609
      "unique target sequence: 1\n",
610
      "protein encoding finished...\n",
611
      "Done.\n",
612
      "predicting...\n",
613
      "---------------\n",
614
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
615
      "-------------\n",
616
      "repurposing...\n",
617
      "in total: 82 drug-target pairs\n",
618
      "encoding drug...\n",
619
      "unique drugs: 81\n",
620
      "drug encoding finished...\n",
621
      "encoding protein...\n",
622
      "unique target sequence: 1\n",
623
      "protein encoding finished...\n",
624
      "Done.\n",
625
      "predicting...\n",
626
      "---------------\n",
627
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
628
      "-------------\n",
629
      "repurposing...\n",
630
      "in total: 82 drug-target pairs\n",
631
      "encoding drug...\n",
632
      "unique drugs: 81\n",
633
      "drug encoding finished...\n",
634
      "encoding protein...\n",
635
      "unique target sequence: 1\n",
636
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
637
      "protein encoding finished...\n",
638
      "Done.\n",
639
      "predicting...\n",
640
      "---------------\n",
641
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
642
      "-------------\n",
643
      "repurposing...\n",
644
      "in total: 82 drug-target pairs\n",
645
      "encoding drug...\n",
646
      "unique drugs: 81\n",
647
      "drug encoding finished...\n",
648
      "encoding protein...\n",
649
      "unique target sequence: 1\n",
650
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
651
      "protein encoding finished...\n",
652
      "Done.\n",
653
      "predicting...\n",
654
      "---------------\n",
655
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
656
      "-------------\n",
657
      "models prediction finished...\n",
658
      "aggregating results...\n",
659
      "---------------\n",
660
      "Drug Repurposing Result for RNA_polymerase_SARS_CoV2\n",
661
      "+------+----------------------+--------------------------+---------------+\n",
662
      "| Rank |      Drug Name       |       Target Name        | Binding Score |\n",
663
      "+------+----------------------+--------------------------+---------------+\n",
664
      "|  1   |      Lopinavir       | RNA_polymerase_SARS_CoV2 |      0.28     |\n",
665
      "|  2   |      Darunavir       | RNA_polymerase_SARS_CoV2 |      0.36     |\n",
666
      "|  3   |      Amprenavir      | RNA_polymerase_SARS_CoV2 |      1.22     |\n",
667
      "|  4   |      Tipranavir      | RNA_polymerase_SARS_CoV2 |      5.41     |\n",
668
      "|  5   |      Sofosbuvir      | RNA_polymerase_SARS_CoV2 |      6.37     |\n",
669
      "|  6   |     Daclatasvir      | RNA_polymerase_SARS_CoV2 |      6.66     |\n",
670
      "|  7   |      Baloxavir       | RNA_polymerase_SARS_CoV2 |      7.39     |\n",
671
      "|  8   |      Pleconaril      | RNA_polymerase_SARS_CoV2 |      7.54     |\n",
672
      "|  9   |      Boceprevir      | RNA_polymerase_SARS_CoV2 |      8.10     |\n",
673
      "|  10  |      Vicriviroc      | RNA_polymerase_SARS_CoV2 |      8.32     |\n",
674
      "|  11  |    Fosamprenavir     | RNA_polymerase_SARS_CoV2 |      8.46     |\n",
675
      "|  12  |      Tenofovir       | RNA_polymerase_SARS_CoV2 |     10.18     |\n",
676
      "|  13  |       Descovy        | RNA_polymerase_SARS_CoV2 |     10.18     |\n",
677
      "|  14  |      Foscarnet       | RNA_polymerase_SARS_CoV2 |     10.84     |\n",
678
      "|  15  |      Nelfinavir      | RNA_polymerase_SARS_CoV2 |     11.13     |\n",
679
      "|  16  |     Oseltamivir      | RNA_polymerase_SARS_CoV2 |     11.73     |\n",
680
      "|  17  |      Maraviroc       | RNA_polymerase_SARS_CoV2 |     11.84     |\n",
681
      "|  18  |     Glecaprevir      | RNA_polymerase_SARS_CoV2 |     11.87     |\n",
682
      "|  19  |      Amantadine      | RNA_polymerase_SARS_CoV2 |     12.28     |\n",
683
      "|  20  |      Telaprevir      | RNA_polymerase_SARS_CoV2 |     12.56     |\n",
684
      "|  21  |       Arbidol        | RNA_polymerase_SARS_CoV2 |     14.80     |\n",
685
      "|  22  |      Remdesivir      | RNA_polymerase_SARS_CoV2 |     18.93     |\n",
686
      "|  23  |      Letermovir      | RNA_polymerase_SARS_CoV2 |     20.34     |\n",
687
      "|  24  |       Abacavir       | RNA_polymerase_SARS_CoV2 |     24.28     |\n",
688
      "|  25  |      Saquinavir      | RNA_polymerase_SARS_CoV2 |     25.48     |\n",
689
      "|  26  |     Rimantadine      | RNA_polymerase_SARS_CoV2 |     37.71     |\n",
690
      "|  27  |     Rilpivirine      | RNA_polymerase_SARS_CoV2 |     38.50     |\n",
691
      "|  28  |     Delavirdine      | RNA_polymerase_SARS_CoV2 |     40.78     |\n",
692
      "|  29  |      Ritonavir       | RNA_polymerase_SARS_CoV2 |     43.73     |\n",
693
      "|  30  |       Loviride       | RNA_polymerase_SARS_CoV2 |     63.94     |\n",
694
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
695
      "\n"
696
     ]
697
    }
698
   ],
699
   "source": [
700
    "oneliner.repurpose(target = target, \n",
701
    "                    target_name = target_name, \n",
702
    "                    X_repurpose = X_repurpose,\n",
703
    "                    drug_names = drug_names,\n",
704
    "                    save_dir = './save_folder',\n",
705
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
706
    "                    agg = 'max_effect')"
707
   ]
708
  },
709
  {
710
   "cell_type": "code",
711
   "execution_count": 9,
712
   "metadata": {},
713
   "outputs": [
714
    {
715
     "name": "stdout",
716
     "output_type": "stream",
717
     "text": [
718
      "Loading customized repurposing dataset...\n",
719
      "Checking if pretrained directory is valid...\n",
720
      "Beginning to load the pretrained models...\n",
721
      "Using pretrained model and making predictions...\n",
722
      "repurposing...\n",
723
      "in total: 82 drug-target pairs\n",
724
      "encoding drug...\n",
725
      "unique drugs: 81\n",
726
      "drug encoding finished...\n",
727
      "encoding protein...\n",
728
      "unique target sequence: 1\n",
729
      "protein encoding finished...\n",
730
      "Done.\n",
731
      "predicting...\n",
732
      "---------------\n",
733
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
734
      "-------------\n",
735
      "repurposing...\n",
736
      "in total: 82 drug-target pairs\n",
737
      "encoding drug...\n",
738
      "unique drugs: 81\n",
739
      "drug encoding finished...\n",
740
      "encoding protein...\n",
741
      "unique target sequence: 1\n",
742
      "protein encoding finished...\n",
743
      "Done.\n",
744
      "predicting...\n",
745
      "---------------\n",
746
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
747
      "-------------\n",
748
      "repurposing...\n",
749
      "in total: 82 drug-target pairs\n",
750
      "encoding drug...\n",
751
      "unique drugs: 81\n",
752
      "drug encoding finished...\n",
753
      "encoding protein...\n",
754
      "unique target sequence: 1\n",
755
      "protein encoding finished...\n",
756
      "Done.\n",
757
      "predicting...\n",
758
      "---------------\n",
759
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
760
      "-------------\n",
761
      "repurposing...\n",
762
      "in total: 82 drug-target pairs\n",
763
      "encoding drug...\n",
764
      "unique drugs: 81\n",
765
      "drug encoding finished...\n",
766
      "encoding protein...\n",
767
      "unique target sequence: 1\n",
768
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
769
      "protein encoding finished...\n",
770
      "Done.\n",
771
      "predicting...\n",
772
      "---------------\n",
773
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
774
      "-------------\n",
775
      "repurposing...\n",
776
      "in total: 82 drug-target pairs\n",
777
      "encoding drug...\n",
778
      "unique drugs: 81\n",
779
      "drug encoding finished...\n",
780
      "encoding protein...\n",
781
      "unique target sequence: 1\n",
782
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
783
      "protein encoding finished...\n",
784
      "Done.\n",
785
      "predicting...\n",
786
      "---------------\n",
787
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
788
      "-------------\n",
789
      "models prediction finished...\n",
790
      "aggregating results...\n",
791
      "---------------\n",
792
      "Drug Repurposing Result for RNA_polymerase_SARS_CoV2\n",
793
      "+------+----------------------+--------------------------+---------------+\n",
794
      "| Rank |      Drug Name       |       Target Name        | Binding Score |\n",
795
      "+------+----------------------+--------------------------+---------------+\n",
796
      "|  1   |     Daclatasvir      | RNA_polymerase_SARS_CoV2 |     193.68    |\n",
797
      "|  2   |      Vicriviroc      | RNA_polymerase_SARS_CoV2 |     206.47    |\n",
798
      "|  3   |      Simeprevir      | RNA_polymerase_SARS_CoV2 |     247.13    |\n",
799
      "|  4   |      Sofosbuvir      | RNA_polymerase_SARS_CoV2 |     326.90    |\n",
800
      "|  5   |      Etravirine      | RNA_polymerase_SARS_CoV2 |     420.95    |\n",
801
      "|  6   |      Atazanavir      | RNA_polymerase_SARS_CoV2 |     422.32    |\n",
802
      "|  7   |      Maraviroc       | RNA_polymerase_SARS_CoV2 |     461.91    |\n",
803
      "|  8   |      Lopinavir       | RNA_polymerase_SARS_CoV2 |     468.27    |\n",
804
      "|  9   |      Darunavir       | RNA_polymerase_SARS_CoV2 |     468.37    |\n",
805
      "|  10  |     Rilpivirine      | RNA_polymerase_SARS_CoV2 |     472.57    |\n",
806
      "|  11  |      Letermovir      | RNA_polymerase_SARS_CoV2 |     476.22    |\n",
807
      "|  12  |    Fosamprenavir     | RNA_polymerase_SARS_CoV2 |     476.74    |\n",
808
      "|  13  |      Peramivir       | RNA_polymerase_SARS_CoV2 |     515.97    |\n",
809
      "|  14  |      Telaprevir      | RNA_polymerase_SARS_CoV2 |     567.95    |\n",
810
      "|  15  |      Amprenavir      | RNA_polymerase_SARS_CoV2 |     601.88    |\n",
811
      "|  16  |      Nelfinavir      | RNA_polymerase_SARS_CoV2 |     631.56    |\n",
812
      "|  17  |     Grazoprevir      | RNA_polymerase_SARS_CoV2 |     657.71    |\n",
813
      "|  18  |      Boceprevir      | RNA_polymerase_SARS_CoV2 |     700.05    |\n",
814
      "|  19  |       Abacavir       | RNA_polymerase_SARS_CoV2 |     842.36    |\n",
815
      "|  20  |     Raltegravir      | RNA_polymerase_SARS_CoV2 |     870.85    |\n",
816
      "|  21  |     Delavirdine      | RNA_polymerase_SARS_CoV2 |     893.87    |\n",
817
      "|  22  |      Saquinavir      | RNA_polymerase_SARS_CoV2 |     927.38    |\n",
818
      "|  23  |     Elvitegravir     | RNA_polymerase_SARS_CoV2 |     983.21    |\n",
819
      "|  24  |      Doravirine      | RNA_polymerase_SARS_CoV2 |    1034.73    |\n",
820
      "|  25  |     Dolutegravir     | RNA_polymerase_SARS_CoV2 |    1096.64    |\n",
821
      "|  26  |      Pleconaril      | RNA_polymerase_SARS_CoV2 |    1136.85    |\n",
822
      "|  27  |     Glecaprevir      | RNA_polymerase_SARS_CoV2 |    1159.31    |\n",
823
      "|  28  |     Enfuvirtide      | RNA_polymerase_SARS_CoV2 |    1212.25    |\n",
824
      "|  29  |      Amantadine      | RNA_polymerase_SARS_CoV2 |    1223.55    |\n",
825
      "|  30  |      Ritonavir       | RNA_polymerase_SARS_CoV2 |    1395.41    |\n",
826
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
827
      "\n"
828
     ]
829
    }
830
   ],
831
   "source": [
832
    "oneliner.repurpose(target = target, \n",
833
    "                    target_name = target_name, \n",
834
    "                    X_repurpose = X_repurpose,\n",
835
    "                    drug_names = drug_names,\n",
836
    "                    save_dir = './save_folder',\n",
837
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
838
    "                    agg = 'agg_mean_max')"
839
   ]
840
  },
841
  {
842
   "cell_type": "code",
843
   "execution_count": 10,
844
   "metadata": {
845
    "scrolled": false
846
   },
847
   "outputs": [
848
    {
849
     "name": "stdout",
850
     "output_type": "stream",
851
     "text": [
852
      "Loading customized repurposing dataset...\n",
853
      "Checking if pretrained directory is valid...\n",
854
      "Beginning to load the pretrained models...\n",
855
      "Using pretrained model and making predictions...\n",
856
      "repurposing...\n",
857
      "in total: 82 drug-target pairs\n",
858
      "encoding drug...\n",
859
      "unique drugs: 81\n",
860
      "drug encoding finished...\n",
861
      "encoding protein...\n",
862
      "unique target sequence: 1\n",
863
      "protein encoding finished...\n",
864
      "Done.\n",
865
      "predicting...\n",
866
      "---------------\n",
867
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
868
      "-------------\n",
869
      "repurposing...\n",
870
      "in total: 82 drug-target pairs\n",
871
      "encoding drug...\n",
872
      "unique drugs: 81\n",
873
      "drug encoding finished...\n",
874
      "encoding protein...\n",
875
      "unique target sequence: 1\n",
876
      "protein encoding finished...\n",
877
      "Done.\n",
878
      "predicting...\n",
879
      "---------------\n",
880
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
881
      "-------------\n",
882
      "repurposing...\n",
883
      "in total: 82 drug-target pairs\n",
884
      "encoding drug...\n",
885
      "unique drugs: 81\n",
886
      "drug encoding finished...\n",
887
      "encoding protein...\n",
888
      "unique target sequence: 1\n",
889
      "protein encoding finished...\n",
890
      "Done.\n",
891
      "predicting...\n",
892
      "---------------\n",
893
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
894
      "-------------\n",
895
      "repurposing...\n",
896
      "in total: 82 drug-target pairs\n",
897
      "encoding drug...\n",
898
      "unique drugs: 81\n",
899
      "drug encoding finished...\n",
900
      "encoding protein...\n",
901
      "unique target sequence: 1\n",
902
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
903
      "protein encoding finished...\n",
904
      "Done.\n",
905
      "predicting...\n",
906
      "---------------\n",
907
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
908
      "-------------\n",
909
      "repurposing...\n",
910
      "in total: 82 drug-target pairs\n",
911
      "encoding drug...\n",
912
      "unique drugs: 81\n",
913
      "drug encoding finished...\n",
914
      "encoding protein...\n",
915
      "unique target sequence: 1\n",
916
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
917
      "protein encoding finished...\n",
918
      "Done.\n",
919
      "predicting...\n",
920
      "---------------\n",
921
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
922
      "-------------\n",
923
      "models prediction finished...\n",
924
      "aggregating results...\n",
925
      "---------------\n",
926
      "Drug Repurposing Result for SARS_CoV2_Helicase\n",
927
      "+------+----------------------+--------------------+---------------+\n",
928
      "| Rank |      Drug Name       |    Target Name     | Binding Score |\n",
929
      "+------+----------------------+--------------------+---------------+\n",
930
      "|  1   |     Daclatasvir      | SARS_CoV2_Helicase |     422.51    |\n",
931
      "|  2   |      Simeprevir      | SARS_CoV2_Helicase |     436.10    |\n",
932
      "|  3   |      Sofosbuvir      | SARS_CoV2_Helicase |     460.44    |\n",
933
      "|  4   |      Vicriviroc      | SARS_CoV2_Helicase |     624.43    |\n",
934
      "|  5   |      Etravirine      | SARS_CoV2_Helicase |     749.41    |\n",
935
      "|  6   |      Atazanavir      | SARS_CoV2_Helicase |     822.11    |\n",
936
      "|  7   |     Rilpivirine      | SARS_CoV2_Helicase |     896.30    |\n",
937
      "|  8   |      Letermovir      | SARS_CoV2_Helicase |     904.84    |\n",
938
      "|  9   |     Grazoprevir      | SARS_CoV2_Helicase |     944.09    |\n",
939
      "|  10  |      Maraviroc       | SARS_CoV2_Helicase |     958.09    |\n",
940
      "|  11  |      Lopinavir       | SARS_CoV2_Helicase |     959.09    |\n",
941
      "|  12  |      Darunavir       | SARS_CoV2_Helicase |     960.77    |\n",
942
      "|  13  |      Peramivir       | SARS_CoV2_Helicase |     971.53    |\n",
943
      "|  14  |    Fosamprenavir     | SARS_CoV2_Helicase |     982.04    |\n",
944
      "|  15  | Tenofovir_disoproxil | SARS_CoV2_Helicase |    1025.72    |\n",
945
      "|  16  |      Amantadine      | SARS_CoV2_Helicase |    1067.12    |\n",
946
      "|  17  |      Efavirenz       | SARS_CoV2_Helicase |    1116.72    |\n",
947
      "|  18  |      Telaprevir      | SARS_CoV2_Helicase |    1188.83    |\n",
948
      "|  19  |      Amprenavir      | SARS_CoV2_Helicase |    1229.83    |\n",
949
      "|  20  |     Elvitegravir     | SARS_CoV2_Helicase |    1338.24    |\n",
950
      "|  21  |      Nelfinavir      | SARS_CoV2_Helicase |    1339.03    |\n",
951
      "|  22  |      Tenofovir       | SARS_CoV2_Helicase |    1370.97    |\n",
952
      "|  23  |       Descovy        | SARS_CoV2_Helicase |    1370.97    |\n",
953
      "|  24  |      Ritonavir       | SARS_CoV2_Helicase |    1405.82    |\n",
954
      "|  25  |      Doravirine      | SARS_CoV2_Helicase |    1477.56    |\n",
955
      "|  26  |       Abacavir       | SARS_CoV2_Helicase |    1498.16    |\n",
956
      "|  27  |      Boceprevir      | SARS_CoV2_Helicase |    1757.84    |\n",
957
      "|  28  |     Dolutegravir     | SARS_CoV2_Helicase |    1764.69    |\n",
958
      "|  29  |      Pleconaril      | SARS_CoV2_Helicase |    1787.40    |\n",
959
      "|  30  |     Delavirdine      | SARS_CoV2_Helicase |    1796.55    |\n",
960
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
961
      "\n"
962
     ]
963
    }
964
   ],
965
   "source": [
966
    "target, target_name = dataset.load_SARS_CoV2_Helicase()\n",
967
    "oneliner.repurpose(target = target, \n",
968
    "                    target_name = target_name, \n",
969
    "                    X_repurpose = X_repurpose,\n",
970
    "                    drug_names = drug_names,\n",
971
    "                    save_dir = './save_folder',\n",
972
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
973
    "                    agg = 'mean')"
974
   ]
975
  },
976
  {
977
   "cell_type": "code",
978
   "execution_count": 11,
979
   "metadata": {
980
    "scrolled": false
981
   },
982
   "outputs": [
983
    {
984
     "name": "stdout",
985
     "output_type": "stream",
986
     "text": [
987
      "Loading customized repurposing dataset...\n",
988
      "Checking if pretrained directory is valid...\n",
989
      "Beginning to load the pretrained models...\n",
990
      "Using pretrained model and making predictions...\n",
991
      "repurposing...\n",
992
      "in total: 82 drug-target pairs\n",
993
      "encoding drug...\n",
994
      "unique drugs: 81\n",
995
      "drug encoding finished...\n",
996
      "encoding protein...\n",
997
      "unique target sequence: 1\n",
998
      "protein encoding finished...\n",
999
      "Done.\n",
1000
      "predicting...\n",
1001
      "---------------\n",
1002
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1003
      "-------------\n",
1004
      "repurposing...\n",
1005
      "in total: 82 drug-target pairs\n",
1006
      "encoding drug...\n",
1007
      "unique drugs: 81\n",
1008
      "drug encoding finished...\n",
1009
      "encoding protein...\n",
1010
      "unique target sequence: 1\n",
1011
      "protein encoding finished...\n",
1012
      "Done.\n",
1013
      "predicting...\n",
1014
      "---------------\n",
1015
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1016
      "-------------\n",
1017
      "repurposing...\n",
1018
      "in total: 82 drug-target pairs\n",
1019
      "encoding drug...\n",
1020
      "unique drugs: 81\n",
1021
      "drug encoding finished...\n",
1022
      "encoding protein...\n",
1023
      "unique target sequence: 1\n",
1024
      "protein encoding finished...\n",
1025
      "Done.\n",
1026
      "predicting...\n",
1027
      "---------------\n",
1028
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1029
      "-------------\n",
1030
      "repurposing...\n",
1031
      "in total: 82 drug-target pairs\n",
1032
      "encoding drug...\n",
1033
      "unique drugs: 81\n",
1034
      "drug encoding finished...\n",
1035
      "encoding protein...\n",
1036
      "unique target sequence: 1\n",
1037
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1038
      "protein encoding finished...\n",
1039
      "Done.\n",
1040
      "predicting...\n",
1041
      "---------------\n",
1042
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1043
      "-------------\n",
1044
      "repurposing...\n",
1045
      "in total: 82 drug-target pairs\n",
1046
      "encoding drug...\n",
1047
      "unique drugs: 81\n",
1048
      "drug encoding finished...\n",
1049
      "encoding protein...\n",
1050
      "unique target sequence: 1\n",
1051
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1052
      "protein encoding finished...\n",
1053
      "Done.\n",
1054
      "predicting...\n",
1055
      "---------------\n",
1056
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1057
      "-------------\n",
1058
      "models prediction finished...\n",
1059
      "aggregating results...\n",
1060
      "---------------\n",
1061
      "Drug Repurposing Result for SARS_CoV2_Helicase\n",
1062
      "+------+----------------------+--------------------+---------------+\n",
1063
      "| Rank |      Drug Name       |    Target Name     | Binding Score |\n",
1064
      "+------+----------------------+--------------------+---------------+\n",
1065
      "|  1   |      Lopinavir       | SARS_CoV2_Helicase |      0.26     |\n",
1066
      "|  2   |      Darunavir       | SARS_CoV2_Helicase |      0.33     |\n",
1067
      "|  3   |      Amprenavir      | SARS_CoV2_Helicase |      0.96     |\n",
1068
      "|  4   |      Tipranavir      | SARS_CoV2_Helicase |      2.84     |\n",
1069
      "|  5   |      Baloxavir       | SARS_CoV2_Helicase |      4.24     |\n",
1070
      "|  6   |      Boceprevir      | SARS_CoV2_Helicase |      4.34     |\n",
1071
      "|  7   |      Vicriviroc      | SARS_CoV2_Helicase |      5.51     |\n",
1072
      "|  8   |    Fosamprenavir     | SARS_CoV2_Helicase |      5.58     |\n",
1073
      "|  9   |     Oseltamivir      | SARS_CoV2_Helicase |      5.73     |\n",
1074
      "|  10  |     Glecaprevir      | SARS_CoV2_Helicase |      5.78     |\n",
1075
      "|  11  |      Telaprevir      | SARS_CoV2_Helicase |      6.22     |\n",
1076
      "|  12  |     Daclatasvir      | SARS_CoV2_Helicase |      6.50     |\n",
1077
      "|  13  |      Nelfinavir      | SARS_CoV2_Helicase |      8.26     |\n",
1078
      "|  14  |      Amantadine      | SARS_CoV2_Helicase |     10.22     |\n",
1079
      "|  15  |      Pleconaril      | SARS_CoV2_Helicase |     11.02     |\n",
1080
      "|  16  |      Maraviroc       | SARS_CoV2_Helicase |     11.37     |\n",
1081
      "|  17  |      Foscarnet       | SARS_CoV2_Helicase |     11.44     |\n",
1082
      "|  18  |      Sofosbuvir      | SARS_CoV2_Helicase |     12.00     |\n",
1083
      "|  19  |       Abacavir       | SARS_CoV2_Helicase |     15.96     |\n",
1084
      "|  20  |      Tenofovir       | SARS_CoV2_Helicase |     18.68     |\n",
1085
      "|  21  |       Descovy        | SARS_CoV2_Helicase |     18.68     |\n",
1086
      "|  22  |       Arbidol        | SARS_CoV2_Helicase |     18.93     |\n",
1087
      "|  23  |      Letermovir      | SARS_CoV2_Helicase |     20.55     |\n",
1088
      "|  24  |      Ritonavir       | SARS_CoV2_Helicase |     26.00     |\n",
1089
      "|  25  |     Rimantadine      | SARS_CoV2_Helicase |     26.93     |\n",
1090
      "|  26  |      Remdesivir      | SARS_CoV2_Helicase |     27.36     |\n",
1091
      "|  27  |      Atazanavir      | SARS_CoV2_Helicase |     29.60     |\n",
1092
      "|  28  |      Saquinavir      | SARS_CoV2_Helicase |     29.99     |\n",
1093
      "|  29  |      Simeprevir      | SARS_CoV2_Helicase |     32.97     |\n",
1094
      "|  30  |      Etravirine      | SARS_CoV2_Helicase |     34.18     |\n",
1095
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
1096
      "\n"
1097
     ]
1098
    }
1099
   ],
1100
   "source": [
1101
    "oneliner.repurpose(target = target, \n",
1102
    "                    target_name = target_name, \n",
1103
    "                    X_repurpose = X_repurpose,\n",
1104
    "                    drug_names = drug_names,\n",
1105
    "                    save_dir = './save_folder',\n",
1106
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
1107
    "                    agg = 'max_effect')"
1108
   ]
1109
  },
1110
  {
1111
   "cell_type": "code",
1112
   "execution_count": 12,
1113
   "metadata": {},
1114
   "outputs": [
1115
    {
1116
     "name": "stdout",
1117
     "output_type": "stream",
1118
     "text": [
1119
      "Loading customized repurposing dataset...\n",
1120
      "Checking if pretrained directory is valid...\n",
1121
      "Beginning to load the pretrained models...\n",
1122
      "Using pretrained model and making predictions...\n",
1123
      "repurposing...\n",
1124
      "in total: 82 drug-target pairs\n",
1125
      "encoding drug...\n",
1126
      "unique drugs: 81\n",
1127
      "drug encoding finished...\n",
1128
      "encoding protein...\n",
1129
      "unique target sequence: 1\n",
1130
      "protein encoding finished...\n",
1131
      "Done.\n",
1132
      "predicting...\n",
1133
      "---------------\n",
1134
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1135
      "-------------\n",
1136
      "repurposing...\n",
1137
      "in total: 82 drug-target pairs\n",
1138
      "encoding drug...\n",
1139
      "unique drugs: 81\n",
1140
      "drug encoding finished...\n",
1141
      "encoding protein...\n",
1142
      "unique target sequence: 1\n",
1143
      "protein encoding finished...\n",
1144
      "Done.\n",
1145
      "predicting...\n",
1146
      "---------------\n",
1147
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1148
      "-------------\n",
1149
      "repurposing...\n",
1150
      "in total: 82 drug-target pairs\n",
1151
      "encoding drug...\n",
1152
      "unique drugs: 81\n",
1153
      "drug encoding finished...\n",
1154
      "encoding protein...\n",
1155
      "unique target sequence: 1\n",
1156
      "protein encoding finished...\n",
1157
      "Done.\n",
1158
      "predicting...\n",
1159
      "---------------\n",
1160
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1161
      "-------------\n",
1162
      "repurposing...\n",
1163
      "in total: 82 drug-target pairs\n",
1164
      "encoding drug...\n",
1165
      "unique drugs: 81\n",
1166
      "drug encoding finished...\n",
1167
      "encoding protein...\n",
1168
      "unique target sequence: 1\n",
1169
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1170
      "protein encoding finished...\n",
1171
      "Done.\n",
1172
      "predicting...\n",
1173
      "---------------\n",
1174
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1175
      "-------------\n",
1176
      "repurposing...\n",
1177
      "in total: 82 drug-target pairs\n",
1178
      "encoding drug...\n",
1179
      "unique drugs: 81\n",
1180
      "drug encoding finished...\n",
1181
      "encoding protein...\n",
1182
      "unique target sequence: 1\n",
1183
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1184
      "protein encoding finished...\n",
1185
      "Done.\n",
1186
      "predicting...\n",
1187
      "---------------\n",
1188
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1189
      "-------------\n",
1190
      "models prediction finished...\n",
1191
      "aggregating results...\n",
1192
      "---------------\n",
1193
      "Drug Repurposing Result for SARS_CoV2_Helicase\n",
1194
      "+------+----------------------+--------------------+---------------+\n",
1195
      "| Rank |      Drug Name       |    Target Name     | Binding Score |\n",
1196
      "+------+----------------------+--------------------+---------------+\n",
1197
      "|  1   |     Daclatasvir      | SARS_CoV2_Helicase |     214.51    |\n",
1198
      "|  2   |      Simeprevir      | SARS_CoV2_Helicase |     234.54    |\n",
1199
      "|  3   |      Sofosbuvir      | SARS_CoV2_Helicase |     236.22    |\n",
1200
      "|  4   |      Vicriviroc      | SARS_CoV2_Helicase |     314.97    |\n",
1201
      "|  5   |      Etravirine      | SARS_CoV2_Helicase |     391.80    |\n",
1202
      "|  6   |      Atazanavir      | SARS_CoV2_Helicase |     425.85    |\n",
1203
      "|  7   |      Letermovir      | SARS_CoV2_Helicase |     462.70    |\n",
1204
      "|  8   |     Rilpivirine      | SARS_CoV2_Helicase |     474.99    |\n",
1205
      "|  9   |      Lopinavir       | SARS_CoV2_Helicase |     479.67    |\n",
1206
      "|  10  |      Darunavir       | SARS_CoV2_Helicase |     480.55    |\n",
1207
      "|  11  |      Maraviroc       | SARS_CoV2_Helicase |     484.73    |\n",
1208
      "|  12  |    Fosamprenavir     | SARS_CoV2_Helicase |     493.81    |\n",
1209
      "|  13  |      Peramivir       | SARS_CoV2_Helicase |     516.79    |\n",
1210
      "|  14  |     Grazoprevir      | SARS_CoV2_Helicase |     525.42    |\n",
1211
      "|  15  |      Amantadine      | SARS_CoV2_Helicase |     538.67    |\n",
1212
      "|  16  |      Telaprevir      | SARS_CoV2_Helicase |     597.52    |\n",
1213
      "|  17  |      Amprenavir      | SARS_CoV2_Helicase |     615.40    |\n",
1214
      "|  18  | Tenofovir_disoproxil | SARS_CoV2_Helicase |     620.33    |\n",
1215
      "|  19  |      Nelfinavir      | SARS_CoV2_Helicase |     673.65    |\n",
1216
      "|  20  |      Efavirenz       | SARS_CoV2_Helicase |     689.13    |\n",
1217
      "|  21  |      Tenofovir       | SARS_CoV2_Helicase |     694.82    |\n",
1218
      "|  22  |       Descovy        | SARS_CoV2_Helicase |     694.82    |\n",
1219
      "|  23  |      Ritonavir       | SARS_CoV2_Helicase |     715.91    |\n",
1220
      "|  24  |     Elvitegravir     | SARS_CoV2_Helicase |     729.73    |\n",
1221
      "|  25  |       Abacavir       | SARS_CoV2_Helicase |     757.06    |\n",
1222
      "|  26  |      Doravirine      | SARS_CoV2_Helicase |     800.64    |\n",
1223
      "|  27  |      Boceprevir      | SARS_CoV2_Helicase |     881.09    |\n",
1224
      "|  28  |      Pleconaril      | SARS_CoV2_Helicase |     899.21    |\n",
1225
      "|  29  |     Delavirdine      | SARS_CoV2_Helicase |     924.90    |\n",
1226
      "|  30  |     Raltegravir      | SARS_CoV2_Helicase |     934.50    |\n",
1227
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
1228
      "\n"
1229
     ]
1230
    }
1231
   ],
1232
   "source": [
1233
    "oneliner.repurpose(target = target, \n",
1234
    "                    target_name = target_name, \n",
1235
    "                    X_repurpose = X_repurpose,\n",
1236
    "                    drug_names = drug_names,\n",
1237
    "                    save_dir = './save_folder',\n",
1238
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
1239
    "                    agg = 'agg_mean_max')"
1240
   ]
1241
  },
1242
  {
1243
   "cell_type": "code",
1244
   "execution_count": 13,
1245
   "metadata": {
1246
    "scrolled": false
1247
   },
1248
   "outputs": [
1249
    {
1250
     "name": "stdout",
1251
     "output_type": "stream",
1252
     "text": [
1253
      "Loading customized repurposing dataset...\n",
1254
      "Checking if pretrained directory is valid...\n",
1255
      "Beginning to load the pretrained models...\n",
1256
      "Using pretrained model and making predictions...\n",
1257
      "repurposing...\n",
1258
      "in total: 82 drug-target pairs\n",
1259
      "encoding drug...\n",
1260
      "unique drugs: 81\n",
1261
      "drug encoding finished...\n",
1262
      "encoding protein...\n",
1263
      "unique target sequence: 1\n",
1264
      "protein encoding finished...\n",
1265
      "Done.\n",
1266
      "predicting...\n",
1267
      "---------------\n",
1268
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1269
      "-------------\n",
1270
      "repurposing...\n",
1271
      "in total: 82 drug-target pairs\n",
1272
      "encoding drug...\n",
1273
      "unique drugs: 81\n",
1274
      "drug encoding finished...\n",
1275
      "encoding protein...\n",
1276
      "unique target sequence: 1\n",
1277
      "protein encoding finished...\n",
1278
      "Done.\n",
1279
      "predicting...\n",
1280
      "---------------\n",
1281
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1282
      "-------------\n",
1283
      "repurposing...\n",
1284
      "in total: 82 drug-target pairs\n",
1285
      "encoding drug...\n",
1286
      "unique drugs: 81\n",
1287
      "drug encoding finished...\n",
1288
      "encoding protein...\n",
1289
      "unique target sequence: 1\n",
1290
      "protein encoding finished...\n",
1291
      "Done.\n",
1292
      "predicting...\n",
1293
      "---------------\n",
1294
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1295
      "-------------\n",
1296
      "repurposing...\n",
1297
      "in total: 82 drug-target pairs\n",
1298
      "encoding drug...\n",
1299
      "unique drugs: 81\n",
1300
      "drug encoding finished...\n",
1301
      "encoding protein...\n",
1302
      "unique target sequence: 1\n",
1303
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1304
      "protein encoding finished...\n",
1305
      "Done.\n",
1306
      "predicting...\n",
1307
      "---------------\n",
1308
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1309
      "-------------\n",
1310
      "repurposing...\n",
1311
      "in total: 82 drug-target pairs\n",
1312
      "encoding drug...\n",
1313
      "unique drugs: 81\n",
1314
      "drug encoding finished...\n",
1315
      "encoding protein...\n",
1316
      "unique target sequence: 1\n",
1317
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1318
      "protein encoding finished...\n",
1319
      "Done.\n",
1320
      "predicting...\n",
1321
      "---------------\n",
1322
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1323
      "-------------\n",
1324
      "models prediction finished...\n",
1325
      "aggregating results...\n",
1326
      "---------------\n",
1327
      "Drug Repurposing Result for SARS_CoV2_3to5_exonuclease\n",
1328
      "+------+----------------------+----------------------------+---------------+\n",
1329
      "| Rank |      Drug Name       |        Target Name         | Binding Score |\n",
1330
      "+------+----------------------+----------------------------+---------------+\n",
1331
      "|  1   |      Sofosbuvir      | SARS_CoV2_3to5_exonuclease |     331.42    |\n",
1332
      "|  2   |      Simeprevir      | SARS_CoV2_3to5_exonuclease |     357.64    |\n",
1333
      "|  3   |     Daclatasvir      | SARS_CoV2_3to5_exonuclease |     391.05    |\n",
1334
      "|  4   |      Vicriviroc      | SARS_CoV2_3to5_exonuclease |     511.83    |\n",
1335
      "|  5   |      Atazanavir      | SARS_CoV2_3to5_exonuclease |     669.99    |\n",
1336
      "|  6   |      Etravirine      | SARS_CoV2_3to5_exonuclease |     717.46    |\n",
1337
      "|  7   | Tenofovir_disoproxil | SARS_CoV2_3to5_exonuclease |     733.86    |\n",
1338
      "|  8   |      Efavirenz       | SARS_CoV2_3to5_exonuclease |     767.65    |\n",
1339
      "|  9   |     Grazoprevir      | SARS_CoV2_3to5_exonuclease |     820.81    |\n",
1340
      "|  10  |     Rilpivirine      | SARS_CoV2_3to5_exonuclease |     859.15    |\n",
1341
      "|  11  |      Letermovir      | SARS_CoV2_3to5_exonuclease |     865.38    |\n",
1342
      "|  12  |      Peramivir       | SARS_CoV2_3to5_exonuclease |     877.47    |\n",
1343
      "|  13  |      Lopinavir       | SARS_CoV2_3to5_exonuclease |     925.16    |\n",
1344
      "|  14  |      Darunavir       | SARS_CoV2_3to5_exonuclease |     930.19    |\n",
1345
      "|  15  |      Maraviroc       | SARS_CoV2_3to5_exonuclease |     933.72    |\n",
1346
      "|  16  |    Fosamprenavir     | SARS_CoV2_3to5_exonuclease |     952.93    |\n",
1347
      "|  17  |     Elvitegravir     | SARS_CoV2_3to5_exonuclease |     971.27    |\n",
1348
      "|  18  |      Amantadine      | SARS_CoV2_3to5_exonuclease |     977.99    |\n",
1349
      "|  19  |      Telaprevir      | SARS_CoV2_3to5_exonuclease |    1103.15    |\n",
1350
      "|  20  |      Tenofovir       | SARS_CoV2_3to5_exonuclease |    1111.73    |\n",
1351
      "|  21  |       Descovy        | SARS_CoV2_3to5_exonuclease |    1111.73    |\n",
1352
      "|  22  |      Boceprevir      | SARS_CoV2_3to5_exonuclease |    1137.67    |\n",
1353
      "|  23  |      Nelfinavir      | SARS_CoV2_3to5_exonuclease |    1189.33    |\n",
1354
      "|  24  |      Amprenavir      | SARS_CoV2_3to5_exonuclease |    1190.66    |\n",
1355
      "|  25  |      Doravirine      | SARS_CoV2_3to5_exonuclease |    1240.21    |\n",
1356
      "|  26  |      Ritonavir       | SARS_CoV2_3to5_exonuclease |    1310.21    |\n",
1357
      "|  27  |       Abacavir       | SARS_CoV2_3to5_exonuclease |    1424.62    |\n",
1358
      "|  28  |     Raltegravir      | SARS_CoV2_3to5_exonuclease |    1515.33    |\n",
1359
      "|  29  |     Dolutegravir     | SARS_CoV2_3to5_exonuclease |    1593.56    |\n",
1360
      "|  30  |      Pleconaril      | SARS_CoV2_3to5_exonuclease |    1645.66    |\n",
1361
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
1362
      "\n"
1363
     ]
1364
    }
1365
   ],
1366
   "source": [
1367
    "target, target_name = dataset.load_SARS_CoV2_3to5_exonuclease()\n",
1368
    "oneliner.repurpose(target = target, \n",
1369
    "                    target_name = target_name, \n",
1370
    "                    X_repurpose = X_repurpose,\n",
1371
    "                    drug_names = drug_names,\n",
1372
    "                    save_dir = './save_folder',\n",
1373
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
1374
    "                    agg = 'mean')"
1375
   ]
1376
  },
1377
  {
1378
   "cell_type": "code",
1379
   "execution_count": 14,
1380
   "metadata": {
1381
    "scrolled": false
1382
   },
1383
   "outputs": [
1384
    {
1385
     "name": "stdout",
1386
     "output_type": "stream",
1387
     "text": [
1388
      "Loading customized repurposing dataset...\n",
1389
      "Checking if pretrained directory is valid...\n",
1390
      "Beginning to load the pretrained models...\n",
1391
      "Using pretrained model and making predictions...\n",
1392
      "repurposing...\n",
1393
      "in total: 82 drug-target pairs\n",
1394
      "encoding drug...\n",
1395
      "unique drugs: 81\n",
1396
      "drug encoding finished...\n",
1397
      "encoding protein...\n",
1398
      "unique target sequence: 1\n",
1399
      "protein encoding finished...\n",
1400
      "Done.\n",
1401
      "predicting...\n",
1402
      "---------------\n",
1403
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1404
      "-------------\n",
1405
      "repurposing...\n",
1406
      "in total: 82 drug-target pairs\n",
1407
      "encoding drug...\n",
1408
      "unique drugs: 81\n",
1409
      "drug encoding finished...\n",
1410
      "encoding protein...\n",
1411
      "unique target sequence: 1\n",
1412
      "protein encoding finished...\n",
1413
      "Done.\n",
1414
      "predicting...\n",
1415
      "---------------\n",
1416
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1417
      "-------------\n",
1418
      "repurposing...\n",
1419
      "in total: 82 drug-target pairs\n",
1420
      "encoding drug...\n",
1421
      "unique drugs: 81\n",
1422
      "drug encoding finished...\n",
1423
      "encoding protein...\n",
1424
      "unique target sequence: 1\n",
1425
      "protein encoding finished...\n",
1426
      "Done.\n",
1427
      "predicting...\n",
1428
      "---------------\n",
1429
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1430
      "-------------\n",
1431
      "repurposing...\n",
1432
      "in total: 82 drug-target pairs\n",
1433
      "encoding drug...\n",
1434
      "unique drugs: 81\n",
1435
      "drug encoding finished...\n",
1436
      "encoding protein...\n",
1437
      "unique target sequence: 1\n",
1438
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1439
      "protein encoding finished...\n",
1440
      "Done.\n",
1441
      "predicting...\n",
1442
      "---------------\n",
1443
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1444
      "-------------\n",
1445
      "repurposing...\n",
1446
      "in total: 82 drug-target pairs\n",
1447
      "encoding drug...\n",
1448
      "unique drugs: 81\n",
1449
      "drug encoding finished...\n",
1450
      "encoding protein...\n",
1451
      "unique target sequence: 1\n",
1452
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1453
      "protein encoding finished...\n",
1454
      "Done.\n",
1455
      "predicting...\n",
1456
      "---------------\n",
1457
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1458
      "-------------\n",
1459
      "models prediction finished...\n",
1460
      "aggregating results...\n",
1461
      "---------------\n",
1462
      "Drug Repurposing Result for SARS_CoV2_3to5_exonuclease\n",
1463
      "+------+----------------------+----------------------------+---------------+\n",
1464
      "| Rank |      Drug Name       |        Target Name         | Binding Score |\n",
1465
      "+------+----------------------+----------------------------+---------------+\n",
1466
      "|  1   |      Lopinavir       | SARS_CoV2_3to5_exonuclease |      0.21     |\n",
1467
      "|  2   |      Darunavir       | SARS_CoV2_3to5_exonuclease |      0.26     |\n",
1468
      "|  3   |      Amprenavir      | SARS_CoV2_3to5_exonuclease |      0.77     |\n",
1469
      "|  4   |      Tipranavir      | SARS_CoV2_3to5_exonuclease |      1.98     |\n",
1470
      "|  5   |      Baloxavir       | SARS_CoV2_3to5_exonuclease |      2.76     |\n",
1471
      "|  6   |      Boceprevir      | SARS_CoV2_3to5_exonuclease |      3.35     |\n",
1472
      "|  7   |     Glecaprevir      | SARS_CoV2_3to5_exonuclease |      3.63     |\n",
1473
      "|  8   |     Oseltamivir      | SARS_CoV2_3to5_exonuclease |      4.12     |\n",
1474
      "|  9   |      Telaprevir      | SARS_CoV2_3to5_exonuclease |      4.44     |\n",
1475
      "|  10  |      Nelfinavir      | SARS_CoV2_3to5_exonuclease |      5.15     |\n",
1476
      "|  11  |     Daclatasvir      | SARS_CoV2_3to5_exonuclease |      5.31     |\n",
1477
      "|  12  |      Vicriviroc      | SARS_CoV2_3to5_exonuclease |      5.57     |\n",
1478
      "|  13  |    Fosamprenavir     | SARS_CoV2_3to5_exonuclease |      5.64     |\n",
1479
      "|  14  |      Maraviroc       | SARS_CoV2_3to5_exonuclease |      7.09     |\n",
1480
      "|  15  |      Amantadine      | SARS_CoV2_3to5_exonuclease |      8.80     |\n",
1481
      "|  16  |      Etravirine      | SARS_CoV2_3to5_exonuclease |     10.17     |\n",
1482
      "|  17  |      Foscarnet       | SARS_CoV2_3to5_exonuclease |     11.20     |\n",
1483
      "|  18  |      Entecavir       | SARS_CoV2_3to5_exonuclease |     13.15     |\n",
1484
      "|  19  |     Rilpivirine      | SARS_CoV2_3to5_exonuclease |     14.35     |\n",
1485
      "|  20  |      Atazanavir      | SARS_CoV2_3to5_exonuclease |     14.42     |\n",
1486
      "|  21  |      Simeprevir      | SARS_CoV2_3to5_exonuclease |     14.67     |\n",
1487
      "|  22  |      Sofosbuvir      | SARS_CoV2_3to5_exonuclease |     15.18     |\n",
1488
      "|  23  |      Pleconaril      | SARS_CoV2_3to5_exonuclease |     15.20     |\n",
1489
      "|  24  |       Abacavir       | SARS_CoV2_3to5_exonuclease |     16.05     |\n",
1490
      "|  25  |       Arbidol        | SARS_CoV2_3to5_exonuclease |     18.36     |\n",
1491
      "|  26  |      Saquinavir      | SARS_CoV2_3to5_exonuclease |     19.92     |\n",
1492
      "|  27  |      Tenofovir       | SARS_CoV2_3to5_exonuclease |     20.45     |\n",
1493
      "|  28  |       Descovy        | SARS_CoV2_3to5_exonuclease |     20.45     |\n",
1494
      "|  29  |      Ritonavir       | SARS_CoV2_3to5_exonuclease |     26.42     |\n",
1495
      "|  30  |      Letermovir      | SARS_CoV2_3to5_exonuclease |     26.89     |\n",
1496
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
1497
      "\n"
1498
     ]
1499
    }
1500
   ],
1501
   "source": [
1502
    "oneliner.repurpose(target = target, \n",
1503
    "                    target_name = target_name, \n",
1504
    "                    X_repurpose = X_repurpose,\n",
1505
    "                    drug_names = drug_names,\n",
1506
    "                    save_dir = './save_folder',\n",
1507
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
1508
    "                    agg = 'max_effect')"
1509
   ]
1510
  },
1511
  {
1512
   "cell_type": "code",
1513
   "execution_count": 15,
1514
   "metadata": {},
1515
   "outputs": [
1516
    {
1517
     "name": "stdout",
1518
     "output_type": "stream",
1519
     "text": [
1520
      "Loading customized repurposing dataset...\n",
1521
      "Checking if pretrained directory is valid...\n",
1522
      "Beginning to load the pretrained models...\n",
1523
      "Using pretrained model and making predictions...\n",
1524
      "repurposing...\n",
1525
      "in total: 82 drug-target pairs\n",
1526
      "encoding drug...\n",
1527
      "unique drugs: 81\n",
1528
      "drug encoding finished...\n",
1529
      "encoding protein...\n",
1530
      "unique target sequence: 1\n",
1531
      "protein encoding finished...\n",
1532
      "Done.\n",
1533
      "predicting...\n",
1534
      "---------------\n",
1535
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1536
      "-------------\n",
1537
      "repurposing...\n",
1538
      "in total: 82 drug-target pairs\n",
1539
      "encoding drug...\n",
1540
      "unique drugs: 81\n",
1541
      "drug encoding finished...\n",
1542
      "encoding protein...\n",
1543
      "unique target sequence: 1\n",
1544
      "protein encoding finished...\n",
1545
      "Done.\n",
1546
      "predicting...\n",
1547
      "---------------\n",
1548
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1549
      "-------------\n",
1550
      "repurposing...\n",
1551
      "in total: 82 drug-target pairs\n",
1552
      "encoding drug...\n",
1553
      "unique drugs: 81\n",
1554
      "drug encoding finished...\n",
1555
      "encoding protein...\n",
1556
      "unique target sequence: 1\n",
1557
      "protein encoding finished...\n",
1558
      "Done.\n",
1559
      "predicting...\n",
1560
      "---------------\n",
1561
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1562
      "-------------\n",
1563
      "repurposing...\n",
1564
      "in total: 82 drug-target pairs\n",
1565
      "encoding drug...\n",
1566
      "unique drugs: 81\n",
1567
      "drug encoding finished...\n",
1568
      "encoding protein...\n",
1569
      "unique target sequence: 1\n",
1570
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1571
      "protein encoding finished...\n",
1572
      "Done.\n",
1573
      "predicting...\n",
1574
      "---------------\n",
1575
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1576
      "-------------\n",
1577
      "repurposing...\n",
1578
      "in total: 82 drug-target pairs\n",
1579
      "encoding drug...\n",
1580
      "unique drugs: 81\n",
1581
      "drug encoding finished...\n",
1582
      "encoding protein...\n",
1583
      "unique target sequence: 1\n",
1584
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1585
      "protein encoding finished...\n",
1586
      "Done.\n",
1587
      "predicting...\n",
1588
      "---------------\n",
1589
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1590
      "-------------\n",
1591
      "models prediction finished...\n",
1592
      "aggregating results...\n",
1593
      "---------------\n",
1594
      "Drug Repurposing Result for SARS_CoV2_3to5_exonuclease\n",
1595
      "+------+----------------------+----------------------------+---------------+\n",
1596
      "| Rank |      Drug Name       |        Target Name         | Binding Score |\n",
1597
      "+------+----------------------+----------------------------+---------------+\n",
1598
      "|  1   |      Sofosbuvir      | SARS_CoV2_3to5_exonuclease |     173.30    |\n",
1599
      "|  2   |      Simeprevir      | SARS_CoV2_3to5_exonuclease |     186.16    |\n",
1600
      "|  3   |     Daclatasvir      | SARS_CoV2_3to5_exonuclease |     198.18    |\n",
1601
      "|  4   |      Vicriviroc      | SARS_CoV2_3to5_exonuclease |     258.70    |\n",
1602
      "|  5   |      Atazanavir      | SARS_CoV2_3to5_exonuclease |     342.21    |\n",
1603
      "|  6   |      Etravirine      | SARS_CoV2_3to5_exonuclease |     363.81    |\n",
1604
      "|  7   | Tenofovir_disoproxil | SARS_CoV2_3to5_exonuclease |     430.66    |\n",
1605
      "|  8   |     Rilpivirine      | SARS_CoV2_3to5_exonuclease |     436.75    |\n",
1606
      "|  9   |      Letermovir      | SARS_CoV2_3to5_exonuclease |     446.13    |\n",
1607
      "|  10  |      Peramivir       | SARS_CoV2_3to5_exonuclease |     456.39    |\n",
1608
      "|  11  |      Lopinavir       | SARS_CoV2_3to5_exonuclease |     462.68    |\n",
1609
      "|  12  |     Grazoprevir      | SARS_CoV2_3to5_exonuclease |     463.52    |\n",
1610
      "|  13  |      Darunavir       | SARS_CoV2_3to5_exonuclease |     465.23    |\n",
1611
      "|  14  |      Maraviroc       | SARS_CoV2_3to5_exonuclease |     470.40    |\n",
1612
      "|  15  |    Fosamprenavir     | SARS_CoV2_3to5_exonuclease |     479.29    |\n",
1613
      "|  16  |      Amantadine      | SARS_CoV2_3to5_exonuclease |     493.40    |\n",
1614
      "|  17  |      Efavirenz       | SARS_CoV2_3to5_exonuclease |     511.76    |\n",
1615
      "|  18  |     Elvitegravir     | SARS_CoV2_3to5_exonuclease |     546.67    |\n",
1616
      "|  19  |      Telaprevir      | SARS_CoV2_3to5_exonuclease |     553.80    |\n",
1617
      "|  20  |      Tenofovir       | SARS_CoV2_3to5_exonuclease |     566.09    |\n",
1618
      "|  21  |       Descovy        | SARS_CoV2_3to5_exonuclease |     566.09    |\n",
1619
      "|  22  |      Boceprevir      | SARS_CoV2_3to5_exonuclease |     570.51    |\n",
1620
      "|  23  |      Amprenavir      | SARS_CoV2_3to5_exonuclease |     595.71    |\n",
1621
      "|  24  |      Nelfinavir      | SARS_CoV2_3to5_exonuclease |     597.24    |\n",
1622
      "|  25  |      Doravirine      | SARS_CoV2_3to5_exonuclease |     650.27    |\n",
1623
      "|  26  |      Ritonavir       | SARS_CoV2_3to5_exonuclease |     668.31    |\n",
1624
      "|  27  |       Abacavir       | SARS_CoV2_3to5_exonuclease |     720.33    |\n",
1625
      "|  28  |     Raltegravir      | SARS_CoV2_3to5_exonuclease |     771.92    |\n",
1626
      "|  29  |      Pleconaril      | SARS_CoV2_3to5_exonuclease |     830.43    |\n",
1627
      "|  30  |     Delavirdine      | SARS_CoV2_3to5_exonuclease |     864.18    |\n",
1628
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
1629
      "\n"
1630
     ]
1631
    }
1632
   ],
1633
   "source": [
1634
    "oneliner.repurpose(target = target, \n",
1635
    "                    target_name = target_name, \n",
1636
    "                    X_repurpose = X_repurpose,\n",
1637
    "                    drug_names = drug_names,\n",
1638
    "                    save_dir = './save_folder',\n",
1639
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
1640
    "                    agg = 'agg_mean_max')"
1641
   ]
1642
  },
1643
  {
1644
   "cell_type": "code",
1645
   "execution_count": 16,
1646
   "metadata": {
1647
    "scrolled": false
1648
   },
1649
   "outputs": [
1650
    {
1651
     "name": "stdout",
1652
     "output_type": "stream",
1653
     "text": [
1654
      "Loading customized repurposing dataset...\n",
1655
      "Checking if pretrained directory is valid...\n",
1656
      "Beginning to load the pretrained models...\n",
1657
      "Using pretrained model and making predictions...\n",
1658
      "repurposing...\n",
1659
      "in total: 82 drug-target pairs\n",
1660
      "encoding drug...\n",
1661
      "unique drugs: 81\n",
1662
      "drug encoding finished...\n",
1663
      "encoding protein...\n",
1664
      "unique target sequence: 1\n",
1665
      "protein encoding finished...\n",
1666
      "Done.\n",
1667
      "predicting...\n",
1668
      "---------------\n",
1669
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1670
      "-------------\n",
1671
      "repurposing...\n",
1672
      "in total: 82 drug-target pairs\n",
1673
      "encoding drug...\n",
1674
      "unique drugs: 81\n",
1675
      "drug encoding finished...\n",
1676
      "encoding protein...\n",
1677
      "unique target sequence: 1\n",
1678
      "protein encoding finished...\n",
1679
      "Done.\n",
1680
      "predicting...\n",
1681
      "---------------\n",
1682
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1683
      "-------------\n",
1684
      "repurposing...\n",
1685
      "in total: 82 drug-target pairs\n",
1686
      "encoding drug...\n",
1687
      "unique drugs: 81\n",
1688
      "drug encoding finished...\n",
1689
      "encoding protein...\n",
1690
      "unique target sequence: 1\n",
1691
      "protein encoding finished...\n",
1692
      "Done.\n",
1693
      "predicting...\n",
1694
      "---------------\n",
1695
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1696
      "-------------\n",
1697
      "repurposing...\n",
1698
      "in total: 82 drug-target pairs\n",
1699
      "encoding drug...\n",
1700
      "unique drugs: 81\n",
1701
      "drug encoding finished...\n",
1702
      "encoding protein...\n",
1703
      "unique target sequence: 1\n",
1704
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1705
      "protein encoding finished...\n",
1706
      "Done.\n",
1707
      "predicting...\n",
1708
      "---------------\n",
1709
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1710
      "-------------\n",
1711
      "repurposing...\n",
1712
      "in total: 82 drug-target pairs\n",
1713
      "encoding drug...\n",
1714
      "unique drugs: 81\n",
1715
      "drug encoding finished...\n",
1716
      "encoding protein...\n",
1717
      "unique target sequence: 1\n",
1718
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1719
      "protein encoding finished...\n",
1720
      "Done.\n",
1721
      "predicting...\n",
1722
      "---------------\n",
1723
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1724
      "-------------\n",
1725
      "models prediction finished...\n",
1726
      "aggregating results...\n",
1727
      "---------------\n",
1728
      "Drug Repurposing Result for SARS_CoV2_endoRNAse\n",
1729
      "+------+----------------------+---------------------+---------------+\n",
1730
      "| Rank |      Drug Name       |     Target Name     | Binding Score |\n",
1731
      "+------+----------------------+---------------------+---------------+\n",
1732
      "|  1   |     Daclatasvir      | SARS_CoV2_endoRNAse |     425.21    |\n",
1733
      "|  2   |      Simeprevir      | SARS_CoV2_endoRNAse |     464.11    |\n",
1734
      "|  3   |      Sofosbuvir      | SARS_CoV2_endoRNAse |     561.39    |\n",
1735
      "|  4   |      Vicriviroc      | SARS_CoV2_endoRNAse |     794.73    |\n",
1736
      "|  5   |      Etravirine      | SARS_CoV2_endoRNAse |     795.08    |\n",
1737
      "|  6   |      Atazanavir      | SARS_CoV2_endoRNAse |     811.34    |\n",
1738
      "|  7   |     Rilpivirine      | SARS_CoV2_endoRNAse |     869.46    |\n",
1739
      "|  8   |      Letermovir      | SARS_CoV2_endoRNAse |     879.67    |\n",
1740
      "|  9   |      Maraviroc       | SARS_CoV2_endoRNAse |     915.73    |\n",
1741
      "|  10  |      Darunavir       | SARS_CoV2_endoRNAse |     919.07    |\n",
1742
      "|  11  |      Lopinavir       | SARS_CoV2_endoRNAse |     919.69    |\n",
1743
      "|  12  |      Peramivir       | SARS_CoV2_endoRNAse |     939.63    |\n",
1744
      "|  13  |    Fosamprenavir     | SARS_CoV2_endoRNAse |     941.33    |\n",
1745
      "|  14  |     Grazoprevir      | SARS_CoV2_endoRNAse |    1118.11    |\n",
1746
      "|  15  |      Telaprevir      | SARS_CoV2_endoRNAse |    1142.64    |\n",
1747
      "|  16  |      Amprenavir      | SARS_CoV2_endoRNAse |    1176.82    |\n",
1748
      "|  17  |      Amantadine      | SARS_CoV2_endoRNAse |    1190.22    |\n",
1749
      "|  18  |      Nelfinavir      | SARS_CoV2_endoRNAse |    1289.00    |\n",
1750
      "|  19  |     Elvitegravir     | SARS_CoV2_endoRNAse |    1517.18    |\n",
1751
      "|  20  |      Doravirine      | SARS_CoV2_endoRNAse |    1574.81    |\n",
1752
      "|  21  |      Boceprevir      | SARS_CoV2_endoRNAse |    1595.57    |\n",
1753
      "|  22  |     Raltegravir      | SARS_CoV2_endoRNAse |    1661.85    |\n",
1754
      "|  23  | Tenofovir_disoproxil | SARS_CoV2_endoRNAse |    1707.86    |\n",
1755
      "|  24  |     Delavirdine      | SARS_CoV2_endoRNAse |    1775.90    |\n",
1756
      "|  25  |       Abacavir       | SARS_CoV2_endoRNAse |    1809.39    |\n",
1757
      "|  26  |      Saquinavir      | SARS_CoV2_endoRNAse |    1812.37    |\n",
1758
      "|  27  |     Dolutegravir     | SARS_CoV2_endoRNAse |    1855.91    |\n",
1759
      "|  28  |      Ritonavir       | SARS_CoV2_endoRNAse |    1902.92    |\n",
1760
      "|  29  |     Glecaprevir      | SARS_CoV2_endoRNAse |    2152.12    |\n",
1761
      "|  30  |      Pleconaril      | SARS_CoV2_endoRNAse |    2189.36    |\n",
1762
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
1763
      "\n"
1764
     ]
1765
    }
1766
   ],
1767
   "source": [
1768
    "target, target_name = dataset.load_SARS_CoV2_endoRNAse()\n",
1769
    "oneliner.repurpose(target = target, \n",
1770
    "                    target_name = target_name, \n",
1771
    "                    X_repurpose = X_repurpose,\n",
1772
    "                    drug_names = drug_names,\n",
1773
    "                    save_dir = './save_folder',\n",
1774
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
1775
    "                    agg = 'mean')"
1776
   ]
1777
  },
1778
  {
1779
   "cell_type": "code",
1780
   "execution_count": 17,
1781
   "metadata": {
1782
    "scrolled": false
1783
   },
1784
   "outputs": [
1785
    {
1786
     "name": "stdout",
1787
     "output_type": "stream",
1788
     "text": [
1789
      "Loading customized repurposing dataset...\n",
1790
      "Checking if pretrained directory is valid...\n",
1791
      "Beginning to load the pretrained models...\n",
1792
      "Using pretrained model and making predictions...\n",
1793
      "repurposing...\n",
1794
      "in total: 82 drug-target pairs\n",
1795
      "encoding drug...\n",
1796
      "unique drugs: 81\n",
1797
      "drug encoding finished...\n",
1798
      "encoding protein...\n",
1799
      "unique target sequence: 1\n",
1800
      "protein encoding finished...\n",
1801
      "Done.\n",
1802
      "predicting...\n",
1803
      "---------------\n",
1804
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1805
      "-------------\n",
1806
      "repurposing...\n",
1807
      "in total: 82 drug-target pairs\n",
1808
      "encoding drug...\n",
1809
      "unique drugs: 81\n",
1810
      "drug encoding finished...\n",
1811
      "encoding protein...\n",
1812
      "unique target sequence: 1\n",
1813
      "protein encoding finished...\n",
1814
      "Done.\n",
1815
      "predicting...\n",
1816
      "---------------\n",
1817
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1818
      "-------------\n",
1819
      "repurposing...\n",
1820
      "in total: 82 drug-target pairs\n",
1821
      "encoding drug...\n",
1822
      "unique drugs: 81\n",
1823
      "drug encoding finished...\n",
1824
      "encoding protein...\n",
1825
      "unique target sequence: 1\n",
1826
      "protein encoding finished...\n",
1827
      "Done.\n",
1828
      "predicting...\n",
1829
      "---------------\n",
1830
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1831
      "-------------\n",
1832
      "repurposing...\n",
1833
      "in total: 82 drug-target pairs\n",
1834
      "encoding drug...\n",
1835
      "unique drugs: 81\n",
1836
      "drug encoding finished...\n",
1837
      "encoding protein...\n",
1838
      "unique target sequence: 1\n",
1839
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1840
      "protein encoding finished...\n",
1841
      "Done.\n",
1842
      "predicting...\n",
1843
      "---------------\n",
1844
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1845
      "-------------\n",
1846
      "repurposing...\n",
1847
      "in total: 82 drug-target pairs\n",
1848
      "encoding drug...\n",
1849
      "unique drugs: 81\n",
1850
      "drug encoding finished...\n",
1851
      "encoding protein...\n",
1852
      "unique target sequence: 1\n",
1853
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1854
      "protein encoding finished...\n",
1855
      "Done.\n",
1856
      "predicting...\n",
1857
      "---------------\n",
1858
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1859
      "-------------\n",
1860
      "models prediction finished...\n",
1861
      "aggregating results...\n",
1862
      "---------------\n",
1863
      "Drug Repurposing Result for SARS_CoV2_endoRNAse\n",
1864
      "+------+----------------------+---------------------+---------------+\n",
1865
      "| Rank |      Drug Name       |     Target Name     | Binding Score |\n",
1866
      "+------+----------------------+---------------------+---------------+\n",
1867
      "|  1   |      Lopinavir       | SARS_CoV2_endoRNAse |      0.18     |\n",
1868
      "|  2   |      Darunavir       | SARS_CoV2_endoRNAse |      0.23     |\n",
1869
      "|  3   |      Amprenavir      | SARS_CoV2_endoRNAse |      0.80     |\n",
1870
      "|  4   |      Tipranavir      | SARS_CoV2_endoRNAse |      2.65     |\n",
1871
      "|  5   |      Baloxavir       | SARS_CoV2_endoRNAse |      3.88     |\n",
1872
      "|  6   |      Boceprevir      | SARS_CoV2_endoRNAse |      3.96     |\n",
1873
      "|  7   |     Daclatasvir      | SARS_CoV2_endoRNAse |      4.57     |\n",
1874
      "|  8   |     Oseltamivir      | SARS_CoV2_endoRNAse |      5.11     |\n",
1875
      "|  9   |      Vicriviroc      | SARS_CoV2_endoRNAse |      5.27     |\n",
1876
      "|  10  |     Glecaprevir      | SARS_CoV2_endoRNAse |      5.33     |\n",
1877
      "|  11  |    Fosamprenavir     | SARS_CoV2_endoRNAse |      5.34     |\n",
1878
      "|  12  |      Telaprevir      | SARS_CoV2_endoRNAse |      5.64     |\n",
1879
      "|  13  |      Nelfinavir      | SARS_CoV2_endoRNAse |      7.91     |\n",
1880
      "|  14  |      Amantadine      | SARS_CoV2_endoRNAse |      7.91     |\n",
1881
      "|  15  |      Foscarnet       | SARS_CoV2_endoRNAse |     10.88     |\n",
1882
      "|  16  |      Maraviroc       | SARS_CoV2_endoRNAse |     12.47     |\n",
1883
      "|  17  |      Pleconaril      | SARS_CoV2_endoRNAse |     13.01     |\n",
1884
      "|  18  |       Abacavir       | SARS_CoV2_endoRNAse |     15.48     |\n",
1885
      "|  19  |      Sofosbuvir      | SARS_CoV2_endoRNAse |     19.61     |\n",
1886
      "|  20  |     Rimantadine      | SARS_CoV2_endoRNAse |     25.77     |\n",
1887
      "|  21  |       Arbidol        | SARS_CoV2_endoRNAse |     26.51     |\n",
1888
      "|  22  |      Tenofovir       | SARS_CoV2_endoRNAse |     29.80     |\n",
1889
      "|  23  |       Descovy        | SARS_CoV2_endoRNAse |     29.80     |\n",
1890
      "|  24  |      Atazanavir      | SARS_CoV2_endoRNAse |     32.23     |\n",
1891
      "|  25  |      Letermovir      | SARS_CoV2_endoRNAse |     32.71     |\n",
1892
      "|  26  |      Ritonavir       | SARS_CoV2_endoRNAse |     35.84     |\n",
1893
      "|  27  |      Simeprevir      | SARS_CoV2_endoRNAse |     36.19     |\n",
1894
      "|  28  |      Saquinavir      | SARS_CoV2_endoRNAse |     37.63     |\n",
1895
      "|  29  |      Remdesivir      | SARS_CoV2_endoRNAse |     38.42     |\n",
1896
      "|  30  |      Etravirine      | SARS_CoV2_endoRNAse |     40.88     |\n",
1897
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
1898
      "\n"
1899
     ]
1900
    }
1901
   ],
1902
   "source": [
1903
    "oneliner.repurpose(target = target, \n",
1904
    "                    target_name = target_name, \n",
1905
    "                    X_repurpose = X_repurpose,\n",
1906
    "                    drug_names = drug_names,\n",
1907
    "                    save_dir = './save_folder',\n",
1908
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
1909
    "                    agg = 'max_effect')"
1910
   ]
1911
  },
1912
  {
1913
   "cell_type": "code",
1914
   "execution_count": 18,
1915
   "metadata": {},
1916
   "outputs": [
1917
    {
1918
     "name": "stdout",
1919
     "output_type": "stream",
1920
     "text": [
1921
      "Loading customized repurposing dataset...\n",
1922
      "Checking if pretrained directory is valid...\n",
1923
      "Beginning to load the pretrained models...\n",
1924
      "Using pretrained model and making predictions...\n",
1925
      "repurposing...\n",
1926
      "in total: 82 drug-target pairs\n",
1927
      "encoding drug...\n",
1928
      "unique drugs: 81\n",
1929
      "drug encoding finished...\n",
1930
      "encoding protein...\n",
1931
      "unique target sequence: 1\n",
1932
      "protein encoding finished...\n",
1933
      "Done.\n",
1934
      "predicting...\n",
1935
      "---------------\n",
1936
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
1937
      "-------------\n",
1938
      "repurposing...\n",
1939
      "in total: 82 drug-target pairs\n",
1940
      "encoding drug...\n",
1941
      "unique drugs: 81\n",
1942
      "drug encoding finished...\n",
1943
      "encoding protein...\n",
1944
      "unique target sequence: 1\n",
1945
      "protein encoding finished...\n",
1946
      "Done.\n",
1947
      "predicting...\n",
1948
      "---------------\n",
1949
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
1950
      "-------------\n",
1951
      "repurposing...\n",
1952
      "in total: 82 drug-target pairs\n",
1953
      "encoding drug...\n",
1954
      "unique drugs: 81\n",
1955
      "drug encoding finished...\n",
1956
      "encoding protein...\n",
1957
      "unique target sequence: 1\n",
1958
      "protein encoding finished...\n",
1959
      "Done.\n",
1960
      "predicting...\n",
1961
      "---------------\n",
1962
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
1963
      "-------------\n",
1964
      "repurposing...\n",
1965
      "in total: 82 drug-target pairs\n",
1966
      "encoding drug...\n",
1967
      "unique drugs: 81\n",
1968
      "drug encoding finished...\n",
1969
      "encoding protein...\n",
1970
      "unique target sequence: 1\n",
1971
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1972
      "protein encoding finished...\n",
1973
      "Done.\n",
1974
      "predicting...\n",
1975
      "---------------\n",
1976
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
1977
      "-------------\n",
1978
      "repurposing...\n",
1979
      "in total: 82 drug-target pairs\n",
1980
      "encoding drug...\n",
1981
      "unique drugs: 81\n",
1982
      "drug encoding finished...\n",
1983
      "encoding protein...\n",
1984
      "unique target sequence: 1\n",
1985
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
1986
      "protein encoding finished...\n",
1987
      "Done.\n",
1988
      "predicting...\n",
1989
      "---------------\n",
1990
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
1991
      "-------------\n",
1992
      "models prediction finished...\n",
1993
      "aggregating results...\n",
1994
      "---------------\n",
1995
      "Drug Repurposing Result for SARS_CoV2_endoRNAse\n",
1996
      "+------+----------------------+---------------------+---------------+\n",
1997
      "| Rank |      Drug Name       |     Target Name     | Binding Score |\n",
1998
      "+------+----------------------+---------------------+---------------+\n",
1999
      "|  1   |     Daclatasvir      | SARS_CoV2_endoRNAse |     214.89    |\n",
2000
      "|  2   |      Simeprevir      | SARS_CoV2_endoRNAse |     250.15    |\n",
2001
      "|  3   |      Sofosbuvir      | SARS_CoV2_endoRNAse |     290.50    |\n",
2002
      "|  4   |      Vicriviroc      | SARS_CoV2_endoRNAse |     400.00    |\n",
2003
      "|  5   |      Etravirine      | SARS_CoV2_endoRNAse |     417.98    |\n",
2004
      "|  6   |      Atazanavir      | SARS_CoV2_endoRNAse |     421.78    |\n",
2005
      "|  7   |      Letermovir      | SARS_CoV2_endoRNAse |     456.19    |\n",
2006
      "|  8   |      Darunavir       | SARS_CoV2_endoRNAse |     459.65    |\n",
2007
      "|  9   |      Lopinavir       | SARS_CoV2_endoRNAse |     459.94    |\n",
2008
      "|  10  |      Maraviroc       | SARS_CoV2_endoRNAse |     464.10    |\n",
2009
      "|  11  |     Rilpivirine      | SARS_CoV2_endoRNAse |     468.50    |\n",
2010
      "|  12  |    Fosamprenavir     | SARS_CoV2_endoRNAse |     473.33    |\n",
2011
      "|  13  |      Peramivir       | SARS_CoV2_endoRNAse |     512.31    |\n",
2012
      "|  14  |      Telaprevir      | SARS_CoV2_endoRNAse |     574.14    |\n",
2013
      "|  15  |      Amprenavir      | SARS_CoV2_endoRNAse |     588.81    |\n",
2014
      "|  16  |      Amantadine      | SARS_CoV2_endoRNAse |     599.07    |\n",
2015
      "|  17  |     Grazoprevir      | SARS_CoV2_endoRNAse |     628.48    |\n",
2016
      "|  18  |      Nelfinavir      | SARS_CoV2_endoRNAse |     648.46    |\n",
2017
      "|  19  |      Boceprevir      | SARS_CoV2_endoRNAse |     799.77    |\n",
2018
      "|  20  |     Elvitegravir     | SARS_CoV2_endoRNAse |     817.42    |\n",
2019
      "|  21  |      Doravirine      | SARS_CoV2_endoRNAse |     853.32    |\n",
2020
      "|  22  |     Raltegravir      | SARS_CoV2_endoRNAse |     872.32    |\n",
2021
      "|  23  |       Abacavir       | SARS_CoV2_endoRNAse |     912.43    |\n",
2022
      "|  24  |     Delavirdine      | SARS_CoV2_endoRNAse |     920.16    |\n",
2023
      "|  25  |      Saquinavir      | SARS_CoV2_endoRNAse |     925.00    |\n",
2024
      "|  26  | Tenofovir_disoproxil | SARS_CoV2_endoRNAse |     969.32    |\n",
2025
      "|  27  |      Ritonavir       | SARS_CoV2_endoRNAse |     969.38    |\n",
2026
      "|  28  |     Glecaprevir      | SARS_CoV2_endoRNAse |    1078.72    |\n",
2027
      "|  29  |      Pleconaril      | SARS_CoV2_endoRNAse |    1101.19    |\n",
2028
      "|  30  |      Tenofovir       | SARS_CoV2_endoRNAse |    1266.07    |\n",
2029
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
2030
      "\n"
2031
     ]
2032
    }
2033
   ],
2034
   "source": [
2035
    "oneliner.repurpose(target = target, \n",
2036
    "                    target_name = target_name, \n",
2037
    "                    X_repurpose = X_repurpose,\n",
2038
    "                    drug_names = drug_names,\n",
2039
    "                    save_dir = './save_folder',\n",
2040
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
2041
    "                    agg = 'agg_mean_max')"
2042
   ]
2043
  },
2044
  {
2045
   "cell_type": "code",
2046
   "execution_count": 19,
2047
   "metadata": {
2048
    "scrolled": false
2049
   },
2050
   "outputs": [
2051
    {
2052
     "name": "stdout",
2053
     "output_type": "stream",
2054
     "text": [
2055
      "Loading customized repurposing dataset...\n",
2056
      "Checking if pretrained directory is valid...\n",
2057
      "Beginning to load the pretrained models...\n",
2058
      "Using pretrained model and making predictions...\n",
2059
      "repurposing...\n",
2060
      "in total: 82 drug-target pairs\n",
2061
      "encoding drug...\n",
2062
      "unique drugs: 81\n",
2063
      "drug encoding finished...\n",
2064
      "encoding protein...\n",
2065
      "unique target sequence: 1\n",
2066
      "protein encoding finished...\n",
2067
      "Done.\n",
2068
      "predicting...\n",
2069
      "---------------\n",
2070
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
2071
      "-------------\n",
2072
      "repurposing...\n",
2073
      "in total: 82 drug-target pairs\n",
2074
      "encoding drug...\n",
2075
      "unique drugs: 81\n",
2076
      "drug encoding finished...\n",
2077
      "encoding protein...\n",
2078
      "unique target sequence: 1\n",
2079
      "protein encoding finished...\n",
2080
      "Done.\n",
2081
      "predicting...\n",
2082
      "---------------\n",
2083
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
2084
      "-------------\n",
2085
      "repurposing...\n",
2086
      "in total: 82 drug-target pairs\n",
2087
      "encoding drug...\n",
2088
      "unique drugs: 81\n",
2089
      "drug encoding finished...\n",
2090
      "encoding protein...\n",
2091
      "unique target sequence: 1\n",
2092
      "protein encoding finished...\n",
2093
      "Done.\n",
2094
      "predicting...\n",
2095
      "---------------\n",
2096
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
2097
      "-------------\n",
2098
      "repurposing...\n",
2099
      "in total: 82 drug-target pairs\n",
2100
      "encoding drug...\n",
2101
      "unique drugs: 81\n",
2102
      "drug encoding finished...\n",
2103
      "encoding protein...\n",
2104
      "unique target sequence: 1\n",
2105
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
2106
      "protein encoding finished...\n",
2107
      "Done.\n",
2108
      "predicting...\n",
2109
      "---------------\n",
2110
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
2111
      "-------------\n",
2112
      "repurposing...\n",
2113
      "in total: 82 drug-target pairs\n",
2114
      "encoding drug...\n",
2115
      "unique drugs: 81\n",
2116
      "drug encoding finished...\n",
2117
      "encoding protein...\n",
2118
      "unique target sequence: 1\n",
2119
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
2120
      "protein encoding finished...\n",
2121
      "Done.\n",
2122
      "predicting...\n",
2123
      "---------------\n",
2124
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
2125
      "-------------\n",
2126
      "models prediction finished...\n",
2127
      "aggregating results...\n",
2128
      "---------------\n",
2129
      "Drug Repurposing Result for SARS_CoV2_2_O_ribose_methyltransferase\n",
2130
      "+------+----------------------+----------------------------------------+---------------+\n",
2131
      "| Rank |      Drug Name       |              Target Name               | Binding Score |\n",
2132
      "+------+----------------------+----------------------------------------+---------------+\n",
2133
      "|  1   |      Sofosbuvir      | SARS_CoV2_2_O_ribose_methyltransferase |     364.51    |\n",
2134
      "|  2   |     Daclatasvir      | SARS_CoV2_2_O_ribose_methyltransferase |     424.59    |\n",
2135
      "|  3   |      Simeprevir      | SARS_CoV2_2_O_ribose_methyltransferase |     512.20    |\n",
2136
      "|  4   |      Vicriviroc      | SARS_CoV2_2_O_ribose_methyltransferase |     739.15    |\n",
2137
      "|  5   |      Etravirine      | SARS_CoV2_2_O_ribose_methyltransferase |     776.94    |\n",
2138
      "|  6   |      Atazanavir      | SARS_CoV2_2_O_ribose_methyltransferase |     835.38    |\n",
2139
      "|  7   |      Amantadine      | SARS_CoV2_2_O_ribose_methyltransferase |     849.80    |\n",
2140
      "|  8   |     Rilpivirine      | SARS_CoV2_2_O_ribose_methyltransferase |     882.95    |\n",
2141
      "|  9   |      Letermovir      | SARS_CoV2_2_O_ribose_methyltransferase |     892.38    |\n",
2142
      "|  10  |      Ritonavir       | SARS_CoV2_2_O_ribose_methyltransferase |     916.95    |\n",
2143
      "|  11  |      Lopinavir       | SARS_CoV2_2_O_ribose_methyltransferase |     953.41    |\n",
2144
      "|  12  |      Maraviroc       | SARS_CoV2_2_O_ribose_methyltransferase |     956.00    |\n",
2145
      "|  13  |      Darunavir       | SARS_CoV2_2_O_ribose_methyltransferase |     956.72    |\n",
2146
      "|  14  |      Peramivir       | SARS_CoV2_2_O_ribose_methyltransferase |     968.37    |\n",
2147
      "|  15  |     Grazoprevir      | SARS_CoV2_2_O_ribose_methyltransferase |     976.05    |\n",
2148
      "|  16  |    Fosamprenavir     | SARS_CoV2_2_O_ribose_methyltransferase |     977.57    |\n",
2149
      "|  17  |      Efavirenz       | SARS_CoV2_2_O_ribose_methyltransferase |    1075.01    |\n",
2150
      "|  18  |      Telaprevir      | SARS_CoV2_2_O_ribose_methyltransferase |    1136.33    |\n",
2151
      "|  19  |     Elvitegravir     | SARS_CoV2_2_O_ribose_methyltransferase |    1188.12    |\n",
2152
      "|  20  |      Tenofovir       | SARS_CoV2_2_O_ribose_methyltransferase |    1200.92    |\n",
2153
      "|  21  |       Descovy        | SARS_CoV2_2_O_ribose_methyltransferase |    1200.92    |\n",
2154
      "|  22  |      Amprenavir      | SARS_CoV2_2_O_ribose_methyltransferase |    1222.05    |\n",
2155
      "|  23  |      Nelfinavir      | SARS_CoV2_2_O_ribose_methyltransferase |    1346.06    |\n",
2156
      "|  24  | Tenofovir_disoproxil | SARS_CoV2_2_O_ribose_methyltransferase |    1352.00    |\n",
2157
      "|  25  |     Tromantadine     | SARS_CoV2_2_O_ribose_methyltransferase |    1362.92    |\n",
2158
      "|  26  |      Doravirine      | SARS_CoV2_2_O_ribose_methyltransferase |    1508.91    |\n",
2159
      "|  27  |     Dolutegravir     | SARS_CoV2_2_O_ribose_methyltransferase |    1547.19    |\n",
2160
      "|  28  |       Abacavir       | SARS_CoV2_2_O_ribose_methyltransferase |    1614.96    |\n",
2161
      "|  29  |     Delavirdine      | SARS_CoV2_2_O_ribose_methyltransferase |    1699.89    |\n",
2162
      "|  30  |      Saquinavir      | SARS_CoV2_2_O_ribose_methyltransferase |    1766.76    |\n",
2163
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
2164
      "\n"
2165
     ]
2166
    }
2167
   ],
2168
   "source": [
2169
    "target, target_name = dataset.load_SARS_CoV2_2_O_ribose_methyltransferase()\n",
2170
    "oneliner.repurpose(target = target, \n",
2171
    "                    target_name = target_name, \n",
2172
    "                    X_repurpose = X_repurpose,\n",
2173
    "                    drug_names = drug_names,\n",
2174
    "                    save_dir = './save_folder',\n",
2175
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
2176
    "                    agg = 'mean')"
2177
   ]
2178
  },
2179
  {
2180
   "cell_type": "code",
2181
   "execution_count": 20,
2182
   "metadata": {
2183
    "scrolled": false
2184
   },
2185
   "outputs": [
2186
    {
2187
     "name": "stdout",
2188
     "output_type": "stream",
2189
     "text": [
2190
      "Loading customized repurposing dataset...\n",
2191
      "Checking if pretrained directory is valid...\n",
2192
      "Beginning to load the pretrained models...\n",
2193
      "Using pretrained model and making predictions...\n",
2194
      "repurposing...\n",
2195
      "in total: 82 drug-target pairs\n",
2196
      "encoding drug...\n",
2197
      "unique drugs: 81\n",
2198
      "drug encoding finished...\n",
2199
      "encoding protein...\n",
2200
      "unique target sequence: 1\n",
2201
      "protein encoding finished...\n",
2202
      "Done.\n",
2203
      "predicting...\n",
2204
      "---------------\n",
2205
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
2206
      "-------------\n",
2207
      "repurposing...\n",
2208
      "in total: 82 drug-target pairs\n",
2209
      "encoding drug...\n",
2210
      "unique drugs: 81\n",
2211
      "drug encoding finished...\n",
2212
      "encoding protein...\n",
2213
      "unique target sequence: 1\n",
2214
      "protein encoding finished...\n",
2215
      "Done.\n",
2216
      "predicting...\n",
2217
      "---------------\n",
2218
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
2219
      "-------------\n",
2220
      "repurposing...\n",
2221
      "in total: 82 drug-target pairs\n",
2222
      "encoding drug...\n",
2223
      "unique drugs: 81\n",
2224
      "drug encoding finished...\n",
2225
      "encoding protein...\n",
2226
      "unique target sequence: 1\n",
2227
      "protein encoding finished...\n",
2228
      "Done.\n",
2229
      "predicting...\n",
2230
      "---------------\n",
2231
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
2232
      "-------------\n",
2233
      "repurposing...\n",
2234
      "in total: 82 drug-target pairs\n",
2235
      "encoding drug...\n",
2236
      "unique drugs: 81\n",
2237
      "drug encoding finished...\n",
2238
      "encoding protein...\n",
2239
      "unique target sequence: 1\n",
2240
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
2241
      "protein encoding finished...\n",
2242
      "Done.\n",
2243
      "predicting...\n",
2244
      "---------------\n",
2245
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
2246
      "-------------\n",
2247
      "repurposing...\n",
2248
      "in total: 82 drug-target pairs\n",
2249
      "encoding drug...\n",
2250
      "unique drugs: 81\n",
2251
      "drug encoding finished...\n",
2252
      "encoding protein...\n",
2253
      "unique target sequence: 1\n",
2254
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
2255
      "protein encoding finished...\n",
2256
      "Done.\n",
2257
      "predicting...\n",
2258
      "---------------\n",
2259
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
2260
      "-------------\n",
2261
      "models prediction finished...\n",
2262
      "aggregating results...\n",
2263
      "---------------\n",
2264
      "Drug Repurposing Result for SARS_CoV2_2_O_ribose_methyltransferase\n",
2265
      "+------+----------------------+----------------------------------------+---------------+\n",
2266
      "| Rank |      Drug Name       |              Target Name               | Binding Score |\n",
2267
      "+------+----------------------+----------------------------------------+---------------+\n",
2268
      "|  1   |      Lopinavir       | SARS_CoV2_2_O_ribose_methyltransferase |      0.24     |\n",
2269
      "|  2   |      Darunavir       | SARS_CoV2_2_O_ribose_methyltransferase |      0.31     |\n",
2270
      "|  3   |      Amprenavir      | SARS_CoV2_2_O_ribose_methyltransferase |      0.92     |\n",
2271
      "|  4   |      Tipranavir      | SARS_CoV2_2_O_ribose_methyltransferase |      1.46     |\n",
2272
      "|  5   |      Baloxavir       | SARS_CoV2_2_O_ribose_methyltransferase |      1.87     |\n",
2273
      "|  6   |      Boceprevir      | SARS_CoV2_2_O_ribose_methyltransferase |      2.23     |\n",
2274
      "|  7   |     Glecaprevir      | SARS_CoV2_2_O_ribose_methyltransferase |      2.48     |\n",
2275
      "|  8   |     Oseltamivir      | SARS_CoV2_2_O_ribose_methyltransferase |      2.83     |\n",
2276
      "|  9   |      Telaprevir      | SARS_CoV2_2_O_ribose_methyltransferase |      3.00     |\n",
2277
      "|  10  |      Nelfinavir      | SARS_CoV2_2_O_ribose_methyltransferase |      3.35     |\n",
2278
      "|  11  |      Maraviroc       | SARS_CoV2_2_O_ribose_methyltransferase |      4.97     |\n",
2279
      "|  12  |     Daclatasvir      | SARS_CoV2_2_O_ribose_methyltransferase |      5.68     |\n",
2280
      "|  13  |      Vicriviroc      | SARS_CoV2_2_O_ribose_methyltransferase |      6.15     |\n",
2281
      "|  14  |    Fosamprenavir     | SARS_CoV2_2_O_ribose_methyltransferase |      6.23     |\n",
2282
      "|  15  |      Amantadine      | SARS_CoV2_2_O_ribose_methyltransferase |      9.76     |\n",
2283
      "|  16  |      Etravirine      | SARS_CoV2_2_O_ribose_methyltransferase |     10.07     |\n",
2284
      "|  17  |      Foscarnet       | SARS_CoV2_2_O_ribose_methyltransferase |     11.51     |\n",
2285
      "|  18  |      Atazanavir      | SARS_CoV2_2_O_ribose_methyltransferase |     11.70     |\n",
2286
      "|  19  |      Entecavir       | SARS_CoV2_2_O_ribose_methyltransferase |     11.73     |\n",
2287
      "|  20  |      Pleconaril      | SARS_CoV2_2_O_ribose_methyltransferase |     11.91     |\n",
2288
      "|  21  |      Simeprevir      | SARS_CoV2_2_O_ribose_methyltransferase |     13.29     |\n",
2289
      "|  22  |     Rilpivirine      | SARS_CoV2_2_O_ribose_methyltransferase |     13.73     |\n",
2290
      "|  23  |       Abacavir       | SARS_CoV2_2_O_ribose_methyltransferase |     15.62     |\n",
2291
      "|  24  |      Sofosbuvir      | SARS_CoV2_2_O_ribose_methyltransferase |     18.38     |\n",
2292
      "|  25  |      Saquinavir      | SARS_CoV2_2_O_ribose_methyltransferase |     19.33     |\n",
2293
      "|  26  |     Delavirdine      | SARS_CoV2_2_O_ribose_methyltransferase |     20.24     |\n",
2294
      "|  27  |       Arbidol        | SARS_CoV2_2_O_ribose_methyltransferase |     20.65     |\n",
2295
      "|  28  |      Peramivir       | SARS_CoV2_2_O_ribose_methyltransferase |     24.92     |\n",
2296
      "|  29  |     Raltegravir      | SARS_CoV2_2_O_ribose_methyltransferase |     25.47     |\n",
2297
      "|  30  |      Tenofovir       | SARS_CoV2_2_O_ribose_methyltransferase |     25.94     |\n",
2298
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
2299
      "\n"
2300
     ]
2301
    }
2302
   ],
2303
   "source": [
2304
    "oneliner.repurpose(target = target, \n",
2305
    "                    target_name = target_name, \n",
2306
    "                    X_repurpose = X_repurpose,\n",
2307
    "                    drug_names = drug_names,\n",
2308
    "                    save_dir = './save_folder',\n",
2309
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
2310
    "                    agg = 'max_effect')"
2311
   ]
2312
  },
2313
  {
2314
   "cell_type": "code",
2315
   "execution_count": 21,
2316
   "metadata": {
2317
    "scrolled": false
2318
   },
2319
   "outputs": [
2320
    {
2321
     "name": "stdout",
2322
     "output_type": "stream",
2323
     "text": [
2324
      "Loading customized repurposing dataset...\n",
2325
      "Checking if pretrained directory is valid...\n",
2326
      "Beginning to load the pretrained models...\n",
2327
      "Using pretrained model and making predictions...\n",
2328
      "repurposing...\n",
2329
      "in total: 82 drug-target pairs\n",
2330
      "encoding drug...\n",
2331
      "unique drugs: 81\n",
2332
      "drug encoding finished...\n",
2333
      "encoding protein...\n",
2334
      "unique target sequence: 1\n",
2335
      "protein encoding finished...\n",
2336
      "Done.\n",
2337
      "predicting...\n",
2338
      "---------------\n",
2339
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
2340
      "-------------\n",
2341
      "repurposing...\n",
2342
      "in total: 82 drug-target pairs\n",
2343
      "encoding drug...\n",
2344
      "unique drugs: 81\n",
2345
      "drug encoding finished...\n",
2346
      "encoding protein...\n",
2347
      "unique target sequence: 1\n",
2348
      "protein encoding finished...\n",
2349
      "Done.\n",
2350
      "predicting...\n",
2351
      "---------------\n",
2352
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
2353
      "-------------\n",
2354
      "repurposing...\n",
2355
      "in total: 82 drug-target pairs\n",
2356
      "encoding drug...\n",
2357
      "unique drugs: 81\n",
2358
      "drug encoding finished...\n",
2359
      "encoding protein...\n",
2360
      "unique target sequence: 1\n",
2361
      "protein encoding finished...\n",
2362
      "Done.\n",
2363
      "predicting...\n",
2364
      "---------------\n",
2365
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
2366
      "-------------\n",
2367
      "repurposing...\n",
2368
      "in total: 82 drug-target pairs\n",
2369
      "encoding drug...\n",
2370
      "unique drugs: 81\n",
2371
      "drug encoding finished...\n",
2372
      "encoding protein...\n",
2373
      "unique target sequence: 1\n",
2374
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
2375
      "protein encoding finished...\n",
2376
      "Done.\n",
2377
      "predicting...\n",
2378
      "---------------\n",
2379
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
2380
      "-------------\n",
2381
      "repurposing...\n",
2382
      "in total: 82 drug-target pairs\n",
2383
      "encoding drug...\n",
2384
      "unique drugs: 81\n",
2385
      "drug encoding finished...\n",
2386
      "encoding protein...\n",
2387
      "unique target sequence: 1\n",
2388
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU. Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
2389
      "protein encoding finished...\n",
2390
      "Done.\n",
2391
      "predicting...\n",
2392
      "---------------\n",
2393
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
2394
      "-------------\n",
2395
      "models prediction finished...\n",
2396
      "aggregating results...\n",
2397
      "---------------\n",
2398
      "Drug Repurposing Result for SARS_CoV2_2_O_ribose_methyltransferase\n",
2399
      "+------+----------------------+----------------------------------------+---------------+\n",
2400
      "| Rank |      Drug Name       |              Target Name               | Binding Score |\n",
2401
      "+------+----------------------+----------------------------------------+---------------+\n",
2402
      "|  1   |      Sofosbuvir      | SARS_CoV2_2_O_ribose_methyltransferase |     191.45    |\n",
2403
      "|  2   |     Daclatasvir      | SARS_CoV2_2_O_ribose_methyltransferase |     215.14    |\n",
2404
      "|  3   |      Simeprevir      | SARS_CoV2_2_O_ribose_methyltransferase |     262.75    |\n",
2405
      "|  4   |      Vicriviroc      | SARS_CoV2_2_O_ribose_methyltransferase |     372.65    |\n",
2406
      "|  5   |      Etravirine      | SARS_CoV2_2_O_ribose_methyltransferase |     393.50    |\n",
2407
      "|  6   |      Atazanavir      | SARS_CoV2_2_O_ribose_methyltransferase |     423.54    |\n",
2408
      "|  7   |      Amantadine      | SARS_CoV2_2_O_ribose_methyltransferase |     429.78    |\n",
2409
      "|  8   |     Rilpivirine      | SARS_CoV2_2_O_ribose_methyltransferase |     448.34    |\n",
2410
      "|  9   |      Letermovir      | SARS_CoV2_2_O_ribose_methyltransferase |     462.16    |\n",
2411
      "|  10  |      Lopinavir       | SARS_CoV2_2_O_ribose_methyltransferase |     476.83    |\n",
2412
      "|  11  |      Darunavir       | SARS_CoV2_2_O_ribose_methyltransferase |     478.52    |\n",
2413
      "|  12  |      Ritonavir       | SARS_CoV2_2_O_ribose_methyltransferase |     479.50    |\n",
2414
      "|  13  |      Maraviroc       | SARS_CoV2_2_O_ribose_methyltransferase |     480.49    |\n",
2415
      "|  14  |    Fosamprenavir     | SARS_CoV2_2_O_ribose_methyltransferase |     491.90    |\n",
2416
      "|  15  |      Peramivir       | SARS_CoV2_2_O_ribose_methyltransferase |     496.64    |\n",
2417
      "|  16  |     Grazoprevir      | SARS_CoV2_2_O_ribose_methyltransferase |     523.70    |\n",
2418
      "|  17  |      Telaprevir      | SARS_CoV2_2_O_ribose_methyltransferase |     569.67    |\n",
2419
      "|  18  |      Amprenavir      | SARS_CoV2_2_O_ribose_methyltransferase |     611.48    |\n",
2420
      "|  19  |      Tenofovir       | SARS_CoV2_2_O_ribose_methyltransferase |     613.43    |\n",
2421
      "|  20  |       Descovy        | SARS_CoV2_2_O_ribose_methyltransferase |     613.43    |\n",
2422
      "|  21  |     Elvitegravir     | SARS_CoV2_2_O_ribose_methyltransferase |     639.14    |\n",
2423
      "|  22  |      Efavirenz       | SARS_CoV2_2_O_ribose_methyltransferase |     669.05    |\n",
2424
      "|  23  |      Nelfinavir      | SARS_CoV2_2_O_ribose_methyltransferase |     674.70    |\n",
2425
      "|  24  | Tenofovir_disoproxil | SARS_CoV2_2_O_ribose_methyltransferase |     719.19    |\n",
2426
      "|  25  |      Doravirine      | SARS_CoV2_2_O_ribose_methyltransferase |     778.37    |\n",
2427
      "|  26  |       Abacavir       | SARS_CoV2_2_O_ribose_methyltransferase |     815.29    |\n",
2428
      "|  27  |     Delavirdine      | SARS_CoV2_2_O_ribose_methyltransferase |     860.06    |\n",
2429
      "|  28  |     Dolutegravir     | SARS_CoV2_2_O_ribose_methyltransferase |     867.61    |\n",
2430
      "|  29  |      Saquinavir      | SARS_CoV2_2_O_ribose_methyltransferase |     893.04    |\n",
2431
      "|  30  |     Tromantadine     | SARS_CoV2_2_O_ribose_methyltransferase |     899.18    |\n",
2432
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
2433
      "\n"
2434
     ]
2435
    }
2436
   ],
2437
   "source": [
2438
    "oneliner.repurpose(target = target, \n",
2439
    "                    target_name = target_name, \n",
2440
    "                    X_repurpose = X_repurpose,\n",
2441
    "                    drug_names = drug_names,\n",
2442
    "                    save_dir = './save_folder',\n",
2443
    "                    pretrained_dir = './save_folder/pretrained_models/DeepPurpose_BindingDB/',\n",
2444
    "                    agg = 'agg_mean_max')"
2445
   ]
2446
  }
2447
 ],
2448
 "metadata": {
2449
  "kernelspec": {
2450
   "display_name": "Python 3",
2451
   "language": "python",
2452
   "name": "python3"
2453
  },
2454
  "language_info": {
2455
   "codemirror_mode": {
2456
    "name": "ipython",
2457
    "version": 3
2458
   },
2459
   "file_extension": ".py",
2460
   "mimetype": "text/x-python",
2461
   "name": "python",
2462
   "nbconvert_exporter": "python",
2463
   "pygments_lexer": "ipython3",
2464
   "version": "3.7.7"
2465
  }
2466
 },
2467
 "nbformat": 4,
2468
 "nbformat_minor": 4
2469
}