Switch to unified view

a b/DEMO/case-study-I-Drug-Repurposing-for-3CLPro.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import os\n",
10
    "os.chdir('../')"
11
   ]
12
  },
13
  {
14
   "cell_type": "code",
15
   "execution_count": 2,
16
   "metadata": {},
17
   "outputs": [
18
    {
19
     "name": "stdout",
20
     "output_type": "stream",
21
     "text": [
22
      "Loading customized repurposing dataset...\n",
23
      "Beginning Downloading Pretrained Model...\n",
24
      "Note: if you have already download the pretrained model before, please stop the program and set the input parameter 'pretrained_dir' to the path\n",
25
      "Downloading finished... Beginning to extract zip file...\n",
26
      "Pretrained Models Successfully Downloaded...\n",
27
      "Using pretrained model and making predictions...\n",
28
      "repurposing...\n",
29
      "Drug Target Interaction Prediction Mode...\n",
30
      "in total: 82 drug-target pairs\n",
31
      "encoding drug...\n",
32
      "unique drugs: 81\n",
33
      "encoding protein...\n",
34
      "unique target sequence: 1\n",
35
      "Done.\n",
36
      "predicting...\n",
37
      "---------------\n",
38
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
39
      "-------------\n",
40
      "repurposing...\n",
41
      "Drug Target Interaction Prediction Mode...\n",
42
      "in total: 82 drug-target pairs\n",
43
      "encoding drug...\n",
44
      "unique drugs: 81\n",
45
      "encoding protein...\n",
46
      "unique target sequence: 1\n",
47
      "Done.\n",
48
      "predicting...\n",
49
      "---------------\n",
50
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
51
      "-------------\n",
52
      "repurposing...\n",
53
      "Drug Target Interaction Prediction Mode...\n",
54
      "in total: 82 drug-target pairs\n",
55
      "encoding drug...\n",
56
      "unique drugs: 81\n",
57
      "encoding protein...\n",
58
      "unique target sequence: 1\n",
59
      "Done.\n",
60
      "predicting...\n",
61
      "---------------\n",
62
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
63
      "-------------\n",
64
      "repurposing...\n",
65
      "Drug Target Interaction Prediction Mode...\n",
66
      "in total: 82 drug-target pairs\n",
67
      "encoding drug...\n",
68
      "unique drugs: 81\n",
69
      "encoding protein...\n",
70
      "unique target sequence: 1\n",
71
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
72
      "Done.\n",
73
      "predicting...\n",
74
      "---------------\n",
75
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
76
      "-------------\n",
77
      "repurposing...\n",
78
      "Drug Target Interaction Prediction Mode...\n",
79
      "in total: 82 drug-target pairs\n",
80
      "encoding drug...\n",
81
      "unique drugs: 81\n",
82
      "encoding protein...\n",
83
      "unique target sequence: 1\n",
84
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
85
      "Done.\n",
86
      "predicting...\n",
87
      "---------------\n",
88
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
89
      "-------------\n",
90
      "models prediction finished...\n",
91
      "aggregating results...\n",
92
      "---------------\n",
93
      "Drug Repurposing Result for SARS-CoV2 3CL Protease\n",
94
      "+------+----------------------+------------------------+---------------+\n",
95
      "| Rank |      Drug Name       |      Target Name       | Binding Score |\n",
96
      "+------+----------------------+------------------------+---------------+\n",
97
      "|  1   |      Sofosbuvir      | SARS-CoV2 3CL Protease |     190.25    |\n",
98
      "|  2   |     Daclatasvir      | SARS-CoV2 3CL Protease |     214.58    |\n",
99
      "|  3   |      Vicriviroc      | SARS-CoV2 3CL Protease |     315.70    |\n",
100
      "|  4   |      Simeprevir      | SARS-CoV2 3CL Protease |     396.53    |\n",
101
      "|  5   |      Etravirine      | SARS-CoV2 3CL Protease |     409.34    |\n",
102
      "|  6   |      Amantadine      | SARS-CoV2 3CL Protease |     419.76    |\n",
103
      "|  7   |      Letermovir      | SARS-CoV2 3CL Protease |     460.28    |\n",
104
      "|  8   |     Rilpivirine      | SARS-CoV2 3CL Protease |     470.79    |\n",
105
      "|  9   |      Darunavir       | SARS-CoV2 3CL Protease |     472.24    |\n",
106
      "|  10  |      Lopinavir       | SARS-CoV2 3CL Protease |     473.01    |\n",
107
      "|  11  |      Maraviroc       | SARS-CoV2 3CL Protease |     474.86    |\n",
108
      "|  12  |    Fosamprenavir     | SARS-CoV2 3CL Protease |     487.45    |\n",
109
      "|  13  |      Ritonavir       | SARS-CoV2 3CL Protease |     492.19    |\n",
110
      "|  14  |      Efavirenz       | SARS-CoV2 3CL Protease |     513.81    |\n",
111
      "|  15  |      Peramivir       | SARS-CoV2 3CL Protease |     538.11    |\n",
112
      "|  16  |      Amprenavir      | SARS-CoV2 3CL Protease |     602.76    |\n",
113
      "|  17  |      Telaprevir      | SARS-CoV2 3CL Protease |     607.84    |\n",
114
      "|  18  |     Grazoprevir      | SARS-CoV2 3CL Protease |     632.54    |\n",
115
      "|  19  |      Tenofovir       | SARS-CoV2 3CL Protease |     637.96    |\n",
116
      "|  20  |       Descovy        | SARS-CoV2 3CL Protease |     637.96    |\n",
117
      "|  21  |     Elvitegravir     | SARS-CoV2 3CL Protease |     654.94    |\n",
118
      "|  22  |      Atazanavir      | SARS-CoV2 3CL Protease |     679.53    |\n",
119
      "|  23  |      Nelfinavir      | SARS-CoV2 3CL Protease |     727.49    |\n",
120
      "|  24  |       Abacavir       | SARS-CoV2 3CL Protease |     738.80    |\n",
121
      "|  25  | Tenofovir_disoproxil | SARS-CoV2 3CL Protease |     828.19    |\n",
122
      "|  26  |     Delavirdine      | SARS-CoV2 3CL Protease |     856.06    |\n",
123
      "|  27  |     Tromantadine     | SARS-CoV2 3CL Protease |     863.40    |\n",
124
      "|  28  |      Saquinavir      | SARS-CoV2 3CL Protease |     891.75    |\n",
125
      "|  29  |     Dolutegravir     | SARS-CoV2 3CL Protease |     920.32    |\n",
126
      "|  30  |     Raltegravir      | SARS-CoV2 3CL Protease |     938.43    |\n",
127
      "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n",
128
      "\n"
129
     ]
130
    }
131
   ],
132
   "source": [
133
    "from DeepPurpose import oneliner\n",
134
    "from DeepPurpose.dataset import *\n",
135
    "\n",
136
    "oneliner.repurpose(*load_SARS_CoV2_Protease_3CL(), *load_antiviral_drugs(no_cid = True))"
137
   ]
138
  },
139
  {
140
   "cell_type": "code",
141
   "execution_count": null,
142
   "metadata": {},
143
   "outputs": [],
144
   "source": []
145
  }
146
 ],
147
 "metadata": {
148
  "kernelspec": {
149
   "display_name": "Python 3",
150
   "language": "python",
151
   "name": "python3"
152
  },
153
  "language_info": {
154
   "codemirror_mode": {
155
    "name": "ipython",
156
    "version": 3
157
   },
158
   "file_extension": ".py",
159
   "mimetype": "text/x-python",
160
   "name": "python",
161
   "nbconvert_exporter": "python",
162
   "pygments_lexer": "ipython3",
163
   "version": "3.7.7"
164
  }
165
 },
166
 "nbformat": 4,
167
 "nbformat_minor": 4
168
}