|
a |
|
b/DEMO/case-study-I-Drug-Repurposing-for-3CLPro.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import os\n", |
|
|
10 |
"os.chdir('../')" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "code", |
|
|
15 |
"execution_count": 2, |
|
|
16 |
"metadata": {}, |
|
|
17 |
"outputs": [ |
|
|
18 |
{ |
|
|
19 |
"name": "stdout", |
|
|
20 |
"output_type": "stream", |
|
|
21 |
"text": [ |
|
|
22 |
"Loading customized repurposing dataset...\n", |
|
|
23 |
"Beginning Downloading Pretrained Model...\n", |
|
|
24 |
"Note: if you have already download the pretrained model before, please stop the program and set the input parameter 'pretrained_dir' to the path\n", |
|
|
25 |
"Downloading finished... Beginning to extract zip file...\n", |
|
|
26 |
"Pretrained Models Successfully Downloaded...\n", |
|
|
27 |
"Using pretrained model and making predictions...\n", |
|
|
28 |
"repurposing...\n", |
|
|
29 |
"Drug Target Interaction Prediction Mode...\n", |
|
|
30 |
"in total: 82 drug-target pairs\n", |
|
|
31 |
"encoding drug...\n", |
|
|
32 |
"unique drugs: 81\n", |
|
|
33 |
"encoding protein...\n", |
|
|
34 |
"unique target sequence: 1\n", |
|
|
35 |
"Done.\n", |
|
|
36 |
"predicting...\n", |
|
|
37 |
"---------------\n", |
|
|
38 |
"Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n", |
|
|
39 |
"-------------\n", |
|
|
40 |
"repurposing...\n", |
|
|
41 |
"Drug Target Interaction Prediction Mode...\n", |
|
|
42 |
"in total: 82 drug-target pairs\n", |
|
|
43 |
"encoding drug...\n", |
|
|
44 |
"unique drugs: 81\n", |
|
|
45 |
"encoding protein...\n", |
|
|
46 |
"unique target sequence: 1\n", |
|
|
47 |
"Done.\n", |
|
|
48 |
"predicting...\n", |
|
|
49 |
"---------------\n", |
|
|
50 |
"Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n", |
|
|
51 |
"-------------\n", |
|
|
52 |
"repurposing...\n", |
|
|
53 |
"Drug Target Interaction Prediction Mode...\n", |
|
|
54 |
"in total: 82 drug-target pairs\n", |
|
|
55 |
"encoding drug...\n", |
|
|
56 |
"unique drugs: 81\n", |
|
|
57 |
"encoding protein...\n", |
|
|
58 |
"unique target sequence: 1\n", |
|
|
59 |
"Done.\n", |
|
|
60 |
"predicting...\n", |
|
|
61 |
"---------------\n", |
|
|
62 |
"Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n", |
|
|
63 |
"-------------\n", |
|
|
64 |
"repurposing...\n", |
|
|
65 |
"Drug Target Interaction Prediction Mode...\n", |
|
|
66 |
"in total: 82 drug-target pairs\n", |
|
|
67 |
"encoding drug...\n", |
|
|
68 |
"unique drugs: 81\n", |
|
|
69 |
"encoding protein...\n", |
|
|
70 |
"unique target sequence: 1\n", |
|
|
71 |
"-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n", |
|
|
72 |
"Done.\n", |
|
|
73 |
"predicting...\n", |
|
|
74 |
"---------------\n", |
|
|
75 |
"Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n", |
|
|
76 |
"-------------\n", |
|
|
77 |
"repurposing...\n", |
|
|
78 |
"Drug Target Interaction Prediction Mode...\n", |
|
|
79 |
"in total: 82 drug-target pairs\n", |
|
|
80 |
"encoding drug...\n", |
|
|
81 |
"unique drugs: 81\n", |
|
|
82 |
"encoding protein...\n", |
|
|
83 |
"unique target sequence: 1\n", |
|
|
84 |
"-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n", |
|
|
85 |
"Done.\n", |
|
|
86 |
"predicting...\n", |
|
|
87 |
"---------------\n", |
|
|
88 |
"Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n", |
|
|
89 |
"-------------\n", |
|
|
90 |
"models prediction finished...\n", |
|
|
91 |
"aggregating results...\n", |
|
|
92 |
"---------------\n", |
|
|
93 |
"Drug Repurposing Result for SARS-CoV2 3CL Protease\n", |
|
|
94 |
"+------+----------------------+------------------------+---------------+\n", |
|
|
95 |
"| Rank | Drug Name | Target Name | Binding Score |\n", |
|
|
96 |
"+------+----------------------+------------------------+---------------+\n", |
|
|
97 |
"| 1 | Sofosbuvir | SARS-CoV2 3CL Protease | 190.25 |\n", |
|
|
98 |
"| 2 | Daclatasvir | SARS-CoV2 3CL Protease | 214.58 |\n", |
|
|
99 |
"| 3 | Vicriviroc | SARS-CoV2 3CL Protease | 315.70 |\n", |
|
|
100 |
"| 4 | Simeprevir | SARS-CoV2 3CL Protease | 396.53 |\n", |
|
|
101 |
"| 5 | Etravirine | SARS-CoV2 3CL Protease | 409.34 |\n", |
|
|
102 |
"| 6 | Amantadine | SARS-CoV2 3CL Protease | 419.76 |\n", |
|
|
103 |
"| 7 | Letermovir | SARS-CoV2 3CL Protease | 460.28 |\n", |
|
|
104 |
"| 8 | Rilpivirine | SARS-CoV2 3CL Protease | 470.79 |\n", |
|
|
105 |
"| 9 | Darunavir | SARS-CoV2 3CL Protease | 472.24 |\n", |
|
|
106 |
"| 10 | Lopinavir | SARS-CoV2 3CL Protease | 473.01 |\n", |
|
|
107 |
"| 11 | Maraviroc | SARS-CoV2 3CL Protease | 474.86 |\n", |
|
|
108 |
"| 12 | Fosamprenavir | SARS-CoV2 3CL Protease | 487.45 |\n", |
|
|
109 |
"| 13 | Ritonavir | SARS-CoV2 3CL Protease | 492.19 |\n", |
|
|
110 |
"| 14 | Efavirenz | SARS-CoV2 3CL Protease | 513.81 |\n", |
|
|
111 |
"| 15 | Peramivir | SARS-CoV2 3CL Protease | 538.11 |\n", |
|
|
112 |
"| 16 | Amprenavir | SARS-CoV2 3CL Protease | 602.76 |\n", |
|
|
113 |
"| 17 | Telaprevir | SARS-CoV2 3CL Protease | 607.84 |\n", |
|
|
114 |
"| 18 | Grazoprevir | SARS-CoV2 3CL Protease | 632.54 |\n", |
|
|
115 |
"| 19 | Tenofovir | SARS-CoV2 3CL Protease | 637.96 |\n", |
|
|
116 |
"| 20 | Descovy | SARS-CoV2 3CL Protease | 637.96 |\n", |
|
|
117 |
"| 21 | Elvitegravir | SARS-CoV2 3CL Protease | 654.94 |\n", |
|
|
118 |
"| 22 | Atazanavir | SARS-CoV2 3CL Protease | 679.53 |\n", |
|
|
119 |
"| 23 | Nelfinavir | SARS-CoV2 3CL Protease | 727.49 |\n", |
|
|
120 |
"| 24 | Abacavir | SARS-CoV2 3CL Protease | 738.80 |\n", |
|
|
121 |
"| 25 | Tenofovir_disoproxil | SARS-CoV2 3CL Protease | 828.19 |\n", |
|
|
122 |
"| 26 | Delavirdine | SARS-CoV2 3CL Protease | 856.06 |\n", |
|
|
123 |
"| 27 | Tromantadine | SARS-CoV2 3CL Protease | 863.40 |\n", |
|
|
124 |
"| 28 | Saquinavir | SARS-CoV2 3CL Protease | 891.75 |\n", |
|
|
125 |
"| 29 | Dolutegravir | SARS-CoV2 3CL Protease | 920.32 |\n", |
|
|
126 |
"| 30 | Raltegravir | SARS-CoV2 3CL Protease | 938.43 |\n", |
|
|
127 |
"checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n", |
|
|
128 |
"\n" |
|
|
129 |
] |
|
|
130 |
} |
|
|
131 |
], |
|
|
132 |
"source": [ |
|
|
133 |
"from DeepPurpose import oneliner\n", |
|
|
134 |
"from DeepPurpose.dataset import *\n", |
|
|
135 |
"\n", |
|
|
136 |
"oneliner.repurpose(*load_SARS_CoV2_Protease_3CL(), *load_antiviral_drugs(no_cid = True))" |
|
|
137 |
] |
|
|
138 |
}, |
|
|
139 |
{ |
|
|
140 |
"cell_type": "code", |
|
|
141 |
"execution_count": null, |
|
|
142 |
"metadata": {}, |
|
|
143 |
"outputs": [], |
|
|
144 |
"source": [] |
|
|
145 |
} |
|
|
146 |
], |
|
|
147 |
"metadata": { |
|
|
148 |
"kernelspec": { |
|
|
149 |
"display_name": "Python 3", |
|
|
150 |
"language": "python", |
|
|
151 |
"name": "python3" |
|
|
152 |
}, |
|
|
153 |
"language_info": { |
|
|
154 |
"codemirror_mode": { |
|
|
155 |
"name": "ipython", |
|
|
156 |
"version": 3 |
|
|
157 |
}, |
|
|
158 |
"file_extension": ".py", |
|
|
159 |
"mimetype": "text/x-python", |
|
|
160 |
"name": "python", |
|
|
161 |
"nbconvert_exporter": "python", |
|
|
162 |
"pygments_lexer": "ipython3", |
|
|
163 |
"version": "3.7.7" |
|
|
164 |
} |
|
|
165 |
}, |
|
|
166 |
"nbformat": 4, |
|
|
167 |
"nbformat_minor": 4 |
|
|
168 |
} |