--- a +++ b/DEMO/case-study-I-Drug-Repurposing-for-3CLPro.ipynb @@ -0,0 +1,168 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading customized repurposing dataset...\n", + "Beginning Downloading Pretrained Model...\n", + "Note: if you have already download the pretrained model before, please stop the program and set the input parameter 'pretrained_dir' to the path\n", + "Downloading finished... Beginning to extract zip file...\n", + "Pretrained Models Successfully Downloaded...\n", + "Using pretrained model and making predictions...\n", + "repurposing...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 82 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 81\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n", + "-------------\n", + "repurposing...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 82 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 81\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n", + "-------------\n", + "repurposing...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 82 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 81\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n", + "-------------\n", + "repurposing...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 82 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 81\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n", + "-------------\n", + "repurposing...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 82 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 81\n", + "encoding protein...\n", + "unique target sequence: 1\n", + "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n", + "-------------\n", + "models prediction finished...\n", + "aggregating results...\n", + "---------------\n", + "Drug Repurposing Result for SARS-CoV2 3CL Protease\n", + "+------+----------------------+------------------------+---------------+\n", + "| Rank | Drug Name | Target Name | Binding Score |\n", + "+------+----------------------+------------------------+---------------+\n", + "| 1 | Sofosbuvir | SARS-CoV2 3CL Protease | 190.25 |\n", + "| 2 | Daclatasvir | SARS-CoV2 3CL Protease | 214.58 |\n", + "| 3 | Vicriviroc | SARS-CoV2 3CL Protease | 315.70 |\n", + "| 4 | Simeprevir | SARS-CoV2 3CL Protease | 396.53 |\n", + "| 5 | Etravirine | SARS-CoV2 3CL Protease | 409.34 |\n", + "| 6 | Amantadine | SARS-CoV2 3CL Protease | 419.76 |\n", + "| 7 | Letermovir | SARS-CoV2 3CL Protease | 460.28 |\n", + "| 8 | Rilpivirine | SARS-CoV2 3CL Protease | 470.79 |\n", + "| 9 | Darunavir | SARS-CoV2 3CL Protease | 472.24 |\n", + "| 10 | Lopinavir | SARS-CoV2 3CL Protease | 473.01 |\n", + "| 11 | Maraviroc | SARS-CoV2 3CL Protease | 474.86 |\n", + "| 12 | Fosamprenavir | SARS-CoV2 3CL Protease | 487.45 |\n", + "| 13 | Ritonavir | SARS-CoV2 3CL Protease | 492.19 |\n", + "| 14 | Efavirenz | SARS-CoV2 3CL Protease | 513.81 |\n", + "| 15 | Peramivir | SARS-CoV2 3CL Protease | 538.11 |\n", + "| 16 | Amprenavir | SARS-CoV2 3CL Protease | 602.76 |\n", + "| 17 | Telaprevir | SARS-CoV2 3CL Protease | 607.84 |\n", + "| 18 | Grazoprevir | SARS-CoV2 3CL Protease | 632.54 |\n", + "| 19 | Tenofovir | SARS-CoV2 3CL Protease | 637.96 |\n", + "| 20 | Descovy | SARS-CoV2 3CL Protease | 637.96 |\n", + "| 21 | Elvitegravir | SARS-CoV2 3CL Protease | 654.94 |\n", + "| 22 | Atazanavir | SARS-CoV2 3CL Protease | 679.53 |\n", + "| 23 | Nelfinavir | SARS-CoV2 3CL Protease | 727.49 |\n", + "| 24 | Abacavir | SARS-CoV2 3CL Protease | 738.80 |\n", + "| 25 | Tenofovir_disoproxil | SARS-CoV2 3CL Protease | 828.19 |\n", + "| 26 | Delavirdine | SARS-CoV2 3CL Protease | 856.06 |\n", + "| 27 | Tromantadine | SARS-CoV2 3CL Protease | 863.40 |\n", + "| 28 | Saquinavir | SARS-CoV2 3CL Protease | 891.75 |\n", + "| 29 | Dolutegravir | SARS-CoV2 3CL Protease | 920.32 |\n", + "| 30 | Raltegravir | SARS-CoV2 3CL Protease | 938.43 |\n", + "checkout ./save_folder/results_aggregation/repurposing.txt for the whole list\n", + "\n" + ] + } + ], + "source": [ + "from DeepPurpose import oneliner\n", + "from DeepPurpose.dataset import *\n", + "\n", + "oneliner.repurpose(*load_SARS_CoV2_Protease_3CL(), *load_antiviral_drugs(no_cid = True))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}