[554282]: / Learning / train.py

Download this file

153 lines (124 with data), 5.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os
import random
import pandas as pd
import numpy as np
import time
import torch
from load_data import VoxelDataset
from torch.utils.data import DataLoader, Subset
from model import DeepDrug3D
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
seed = 12306
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Current device: ' + str(device))
def main(opt):
in_channel = 14
model = DeepDrug3D(in_channel)
print(model)
model = model.to(device)
criterion = torch.nn.CrossEntropyLoss()
if opt.opath is None:
os.mkdir('./logs')
opt.opath = './logs'
labels = pd.read_csv(opt.lpath)
xid = labels['id'].tolist()
ys = labels['class'].tolist()
dataset = VoxelDataset(label_file=opt.lpath, root_dir=opt.path)
kfold = StratifiedKFold(n_splits=2, shuffle=True, random_state=seed)
bs = opt.bs
f_cnt = 0
for train_id, val_id in kfold.split(xid, ys):
train_set = Subset(dataset, train_id)
train_loader = DataLoader(train_set, batch_size=bs, shuffle=True)
val_set = Subset(dataset, val_id)
val_loader = DataLoader(val_set, batch_size=bs, shuffle=True)
tr_losses = np.zeros((opt.epoch,))
tr_accs = np.zeros((opt.epoch,))
val_losses = np.zeros((opt.epoch,))
val_accs = np.zeros((opt.epoch,))
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
best_val_loss = 1e6
print('===================Fold {} starts==================='.format(f_cnt+1))
for epoch in range(opt.epoch):
s = time.time()
model.train()
losses = 0
acc = 0
for i, sampled_batch in enumerate(train_loader):
data = sampled_batch['voxel']
y = sampled_batch['label'].squeeze()
data = data.type(torch.FloatTensor)
if in_channel == 1:
data = torch.unsqueeze(data,1)
y = y.to(device)
data = data.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, y)
loss.backward()
optimizer.step()
y_true = y.cpu().numpy()
y_pred = output.data.cpu().numpy().argmax(axis=1)
acc += accuracy_score(y_true, y_pred)*100
losses += loss.data.cpu().numpy()
tr_losses[epoch] = losses/(i+1)
tr_accs[epoch] = acc/(i+1)
model.eval()
v_losses = 0
v_acc = 0
y_preds = []
y_trues = []
for j, sampled_batch in enumerate(val_loader):
data = sampled_batch['voxel']
y = sampled_batch['label'].squeeze()
data = data.type(torch.FloatTensor)
if in_channel == 1:
data = torch.unsqueeze(data,1)
y = y.to(device)
data = data.to(device)
with torch.no_grad():
output = model(data)
loss = criterion(output, y)
y_pred = output.data.cpu().numpy().argmax(axis=1)
y_true = y.cpu().numpy()
y_trues += y_true.tolist()
y_preds += y_pred.tolist()
v_acc += accuracy_score(y_true, y_pred)*100
v_losses += loss.data.cpu().numpy()
cnf = confusion_matrix(y_trues, y_preds)
val_losses[epoch] = v_losses/(j+1)
val_accs[epoch] = v_acc/(j+1)
current_val_loss = v_losses/(j+1)
if current_val_loss < best_val_loss:
best_val_loss = current_val_loss
torch.save(model.state_dict(), os.path.join(opt.opath, 'best_model_fold_{}.ckpt'.format(f_cnt+1)))
print('Epoch: {:03d} | time: {:.4f} seconds\n'
'Train Loss: {:.4f} | Train accuracy {:.4f}\n'
'Validation Loss: {:.4f} | Validation accuracy {:.4f} | Best {:.4f}'.format(epoch+1, time.time()-s, losses/(i+1),
acc/(i+1), v_losses/(j+1), v_acc/(j+1), best_val_loss))
print('Validation confusion matrix:')
print(cnf)
print('===================Fold {} ends==================='.format(f_cnt+1))
np.save(os.path.join(opt.opath, 'train_loss_{}.npy'.format(f_cnt+1)), tr_losses)
np.save(os.path.join(opt.opath, 'train_acc_{}.npy'.format(f_cnt+1)), tr_accs)
np.save(os.path.join(opt.opath, 'val_loss_{}.npy'.format(f_cnt+1)), val_losses)
np.save(os.path.join(opt.opath, 'val_acc_{}.npy'.format(f_cnt+1)), val_accs)
f_cnt += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True, help='path to data folder')
parser.add_argument('--lpath', type=str, required=True, help='path to label file')
parser.add_argument('--opath', type=str, required=False, help='output folder name')
parser.add_argument('--bs', type=int, required=True, help='batch size')
parser.add_argument('--lr', type=float, required=True, help='learning rate')
parser.add_argument('--epoch', type=int, required=True, help='number of epochs to train for')
opt = parser.parse_args()
main(opt)