[9a9a7f]: / source / run_experiments.py

Download this file

547 lines (371 with data), 21.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
from __future__ import print_function
#import matplotlib
#matplotlib.use('Agg')
import numpy as np
import tensorflow as tf
import random as rn
### We modified Pahikkala et al. (2014) source code for cross-val process ###
import os
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(1)
rn.seed(1)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
import keras
from keras import backend as K
tf.set_random_seed(0)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
from datahelper import *
#import logging
from itertools import product
from arguments import argparser, logging
import keras
from keras.models import Model
from keras.preprocessing import sequence
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Activation
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalMaxPooling1D, MaxPooling1D
from keras.layers.normalization import BatchNormalization
from keras.layers import Conv2D, GRU
from keras.layers import Input, Embedding, LSTM, Dense, TimeDistributed, Masking, RepeatVector, merge, Flatten
from keras.models import Model
from keras.utils import plot_model
from keras.layers import Bidirectional
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras import optimizers, layers
import sys, pickle, os
import math, json, time
import decimal
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from random import shuffle
from copy import deepcopy
from sklearn import preprocessing
from emetrics import get_aupr, get_cindex, get_rm2
TABSY = "\t"
figdir = "figures/"
def build_combined_onehot(FLAGS, NUM_FILTERS, FILTER_LENGTH1, FILTER_LENGTH2):
XDinput = Input(shape=(FLAGS.max_smi_len, FLAGS.charsmiset_size))
XTinput = Input(shape=(FLAGS.max_seq_len, FLAGS.charseqset_size))
encode_smiles= Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(XDinput)
encode_smiles = Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(encode_smiles)
encode_smiles = Conv1D(filters=NUM_FILTERS*3, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(encode_smiles)
encode_smiles = GlobalMaxPooling1D()(encode_smiles) #pool_size=pool_length[i]
encode_protein = Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)(XTinput)
encode_protein = Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)(encode_protein)
encode_protein = Conv1D(filters=NUM_FILTERS*3, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)(encode_protein)
encode_protein = GlobalMaxPooling1D()(encode_protein)
encode_interaction = keras.layers.concatenate([encode_smiles, encode_protein])
#encode_interaction = keras.layers.concatenate([encode_smiles, encode_protein], axis=-1) #merge.Add()([encode_smiles, encode_protein])
# Fully connected
FC1 = Dense(1024, activation='relu')(encode_interaction)
FC2 = Dropout(0.1)(FC1)
FC2 = Dense(1024, activation='relu')(FC2)
FC2 = Dropout(0.1)(FC2)
FC2 = Dense(512, activation='relu')(FC2)
predictions = Dense(1, kernel_initializer='normal')(FC2)
interactionModel = Model(inputs=[XDinput, XTinput], outputs=[predictions])
interactionModel.compile(optimizer='adam', loss='mean_squared_error', metrics=[cindex_score]) #, metrics=['cindex_score']
print(interactionModel.summary())
plot_model(interactionModel, to_file='figures/build_combined_onehot.png')
return interactionModel
def build_combined_categorical(FLAGS, NUM_FILTERS, FILTER_LENGTH1, FILTER_LENGTH2):
XDinput = Input(shape=(FLAGS.max_smi_len,), dtype='int32') ### Buralar flagdan gelmeliii
XTinput = Input(shape=(FLAGS.max_seq_len,), dtype='int32')
### SMI_EMB_DINMS FLAGS GELMELII
encode_smiles = Embedding(input_dim=FLAGS.charsmiset_size+1, output_dim=128, input_length=FLAGS.max_smi_len)(XDinput)
encode_smiles = Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(encode_smiles)
encode_smiles = Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(encode_smiles)
encode_smiles = Conv1D(filters=NUM_FILTERS*3, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(encode_smiles)
encode_smiles = GlobalMaxPooling1D()(encode_smiles)
encode_protein = Embedding(input_dim=FLAGS.charseqset_size+1, output_dim=128, input_length=FLAGS.max_seq_len)(XTinput)
encode_protein = Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)(encode_protein)
encode_protein = Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)(encode_protein)
encode_protein = Conv1D(filters=NUM_FILTERS*3, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)(encode_protein)
encode_protein = GlobalMaxPooling1D()(encode_protein)
encode_interaction = keras.layers.concatenate([encode_smiles, encode_protein], axis=-1) #merge.Add()([encode_smiles, encode_protein])
# Fully connected
FC1 = Dense(1024, activation='relu')(encode_interaction)
FC2 = Dropout(0.1)(FC1)
FC2 = Dense(1024, activation='relu')(FC2)
FC2 = Dropout(0.1)(FC2)
FC2 = Dense(512, activation='relu')(FC2)
# And add a logistic regression on top
predictions = Dense(1, kernel_initializer='normal')(FC2) #OR no activation, rght now it's between 0-1, do I want this??? activation='sigmoid'
interactionModel = Model(inputs=[XDinput, XTinput], outputs=[predictions])
interactionModel.compile(optimizer='adam', loss='mean_squared_error', metrics=[cindex_score]) #, metrics=['cindex_score']
print(interactionModel.summary())
plot_model(interactionModel, to_file='figures/build_combined_categorical.png')
return interactionModel
def build_single_drug(FLAGS, NUM_FILTERS, FILTER_LENGTH1, FILTER_LENGTH2):
interactionModel = Sequential()
XTmodel = Sequential()
XTmodel.add(Activation('linear', input_shape=(FLAGS.target_count,)))
encode_smiles = Sequential()
encode_smiles.add(Embedding(input_dim=FLAGS.charsmiset_size+1, output_dim=128, input_length=FLAGS.max_smi_len))
encode_smiles.add(Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)) #input_shape=(MAX_SMI_LEN, SMI_EMBEDDING_DIMS)
encode_smiles.add(Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1))
encode_smiles.add(Conv1D(filters=NUM_FILTERS*3, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1))
encode_smiles.add(GlobalMaxPooling1D())
interactionModel.add(Merge([encode_smiles, XTmodel], mode='concat', concat_axis=1))
#interactionModel.add(layers.merge.Concatenate([XDmodel, XTmodel]))
# Fully connected
interactionModel.add(Dense(1024, activation='relu')) #1024
interactionModel.add(Dropout(0.1))
interactionModel.add(Dense(1024, activation='relu')) #1024
interactionModel.add(Dropout(0.1))
interactionModel.add(Dense(512, activation='relu'))
interactionModel.add(Dense(1, kernel_initializer='normal'))
interactionModel.compile(optimizer='adam', loss='mean_squared_error', metrics=[cindex_score])
print(interactionModel.summary())
plot_model(interactionModel, to_file='figures/build_single_drug.png')
return interactionModel
def build_single_prot(FLAGS, NUM_FILTERS, FILTER_LENGTH1, FILTER_LENGTH2):
interactionModel = Sequential()
XDmodel = Sequential()
XDmodel.add(Activation('linear', input_shape=(FLAGS.drugcount,)))
XTmodel1 = Sequential()
XTmodel1.add(Embedding(input_dim=FLAGS.charseqset_size+1, output_dim=128, input_length=FLAGS.max_seq_len))
XTmodel1.add(Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)) #input_shape=(MAX_SEQ_LEN, SEQ_EMBEDDING_DIMS)
XTmodel1.add(Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1))
XTmodel1.add(Conv1D(filters=NUM_FILTERS*3, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1))
XTmodel1.add(GlobalMaxPooling1D())
interactionModel.add(Merge([XDmodel, XTmodel1], mode='concat', concat_axis=1))
# Fully connected
interactionModel.add(Dense(1024, activation='relu'))
interactionModel.add(Dropout(0.1))
interactionModel.add(Dense(1024, activation='relu'))
interactionModel.add(Dropout(0.1))
interactionModel.add(Dense(512, activation='relu'))
interactionModel.add(Dense(1, kernel_initializer='normal'))
interactionModel.compile(optimizer='adam', loss='mean_squared_error', metrics=[cindex_score])
print(interactionModel.summary())
plot_model(interactionModel, to_file='figures/build_single_protein.png')
return interactionModel
def build_baseline(FLAGS, NUM_FILTERS, FILTER_LENGTH1, FILTER_LENGTH2):
interactionModel = Sequential()
XDmodel = Sequential()
XDmodel.add(Dense(1, activation='linear', input_shape=(FLAGS.drug_count, )))
XTmodel = Sequential()
XTmodel.add(Dense(1, activation='linear', input_shape=(FLAGS.target_count,)))
interactionModel.add(Merge([XDmodel, XTmodel], mode='concat', concat_axis=1))
# Fully connected
interactionModel.add(Dense(1024, activation='relu'))
interactionModel.add(Dropout(0.1))
interactionModel.add(Dense(1024, activation='relu'))
interactionModel.add(Dropout(0.1))
interactionModel.add(Dense(512, activation='relu'))
interactionModel.add(Dense(1, kernel_initializer='normal'))
interactionModel.compile(optimizer='adam', loss='mean_squared_error', metrics=[cindex_score])
print(interactionModel.summary())
plot_model(interactionModel, to_file='figures/build_baseline.png')
return interactionModel
def nfold_1_2_3_setting_sample(XD, XT, Y, label_row_inds, label_col_inds, measure, runmethod, FLAGS, dataset):
bestparamlist = []
test_set, outer_train_sets = dataset.read_sets(FLAGS)
foldinds = len(outer_train_sets)
test_sets = []
## TRAIN AND VAL
val_sets = []
train_sets = []
#logger.info('Start training')
for val_foldind in range(foldinds):
val_fold = outer_train_sets[val_foldind]
val_sets.append(val_fold)
otherfolds = deepcopy(outer_train_sets)
otherfolds.pop(val_foldind)
otherfoldsinds = [item for sublist in otherfolds for item in sublist]
train_sets.append(otherfoldsinds)
test_sets.append(test_set)
print("val set", str(len(val_fold)))
print("train set", str(len(otherfoldsinds)))
bestparamind, best_param_list, bestperf, all_predictions_not_need, losses_not_need = general_nfold_cv(XD, XT, Y, label_row_inds, label_col_inds,
measure, runmethod, FLAGS, train_sets, val_sets)
#print("Test Set len", str(len(test_set)))
#print("Outer Train Set len", str(len(outer_train_sets)))
bestparam, best_param_list, bestperf, all_predictions, all_losses = general_nfold_cv(XD, XT, Y, label_row_inds, label_col_inds,
measure, runmethod, FLAGS, train_sets, test_sets)
testperf = all_predictions[bestparamind]##pointer pos
logging("---FINAL RESULTS-----", FLAGS)
logging("best param index = %s, best param = %.5f" %
(bestparamind, bestparam), FLAGS)
testperfs = []
testloss= []
avgperf = 0.
for test_foldind in range(len(test_sets)):
foldperf = all_predictions[bestparamind][test_foldind]
foldloss = all_losses[bestparamind][test_foldind]
testperfs.append(foldperf)
testloss.append(foldloss)
avgperf += foldperf
avgperf = avgperf / len(test_sets)
avgloss = np.mean(testloss)
teststd = np.std(testperfs)
logging("Test Performance CI", FLAGS)
logging(testperfs, FLAGS)
logging("Test Performance MSE", FLAGS)
logging(testloss, FLAGS)
return avgperf, avgloss, teststd
def general_nfold_cv(XD, XT, Y, label_row_inds, label_col_inds, prfmeasure, runmethod, FLAGS, labeled_sets, val_sets): ## BURAYA DA FLAGS LAZIM????
paramset1 = FLAGS.num_windows #[32]#[32, 512] #[32, 128] # filter numbers
paramset2 = FLAGS.smi_window_lengths #[4, 8]#[4, 32] #[4, 8] #filter length smi
paramset3 = FLAGS.seq_window_lengths #[8, 12]#[64, 256] #[64, 192]#[8, 192, 384]
epoch = FLAGS.num_epoch #100
batchsz = FLAGS.batch_size #256
logging("---Parameter Search-----", FLAGS)
w = len(val_sets)
h = len(paramset1) * len(paramset2) * len(paramset3)
all_predictions = [[0 for x in range(w)] for y in range(h)]
all_losses = [[0 for x in range(w)] for y in range(h)]
print(all_predictions)
for foldind in range(len(val_sets)):
valinds = val_sets[foldind]
labeledinds = labeled_sets[foldind]
Y_train = np.mat(np.copy(Y))
params = {}
XD_train = XD
XT_train = XT
trrows = label_row_inds[labeledinds]
trcols = label_col_inds[labeledinds]
XD_train = XD[trrows]
XT_train = XT[trcols]
train_drugs, train_prots, train_Y = prepare_interaction_pairs(XD, XT, Y, trrows, trcols)
terows = label_row_inds[valinds]
tecols = label_col_inds[valinds]
#print("terows", str(terows), str(len(terows)))
#print("tecols", str(tecols), str(len(tecols)))
val_drugs, val_prots, val_Y = prepare_interaction_pairs(XD, XT, Y, terows, tecols)
pointer = 0
for param1ind in range(len(paramset1)): #hidden neurons
param1value = paramset1[param1ind]
for param2ind in range(len(paramset2)): #learning rate
param2value = paramset2[param2ind]
for param3ind in range(len(paramset3)):
param3value = paramset3[param3ind]
gridmodel = runmethod(FLAGS, param1value, param2value, param3value)
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15)
gridres = gridmodel.fit(([np.array(train_drugs),np.array(train_prots) ]), np.array(train_Y), batch_size=batchsz, epochs=epoch,
validation_data=( ([np.array(val_drugs), np.array(val_prots) ]), np.array(val_Y)), shuffle=False, callbacks=[es] )
predicted_labels = gridmodel.predict([np.array(val_drugs), np.array(val_prots) ])
loss, rperf2 = gridmodel.evaluate(([np.array(val_drugs),np.array(val_prots) ]), np.array(val_Y), verbose=0)
rperf = prfmeasure(val_Y, predicted_labels)
rperf = rperf[0]
logging("P1 = %d, P2 = %d, P3 = %d, Fold = %d, CI-i = %f, CI-ii = %f, MSE = %f" %
(param1ind, param2ind, param3ind, foldind, rperf, rperf2, loss), FLAGS)
plotLoss(gridres, param1ind, param2ind, param3ind, foldind)
all_predictions[pointer][foldind] =rperf #TODO FOR EACH VAL SET allpredictions[pointer][foldind]
all_losses[pointer][foldind]= loss
pointer +=1
bestperf = -float('Inf')
bestpointer = None
best_param_list = []
##Take average according to folds, then chooose best params
pointer = 0
for param1ind in range(len(paramset1)):
for param2ind in range(len(paramset2)):
for param3ind in range(len(paramset3)):
avgperf = 0.
for foldind in range(len(val_sets)):
foldperf = all_predictions[pointer][foldind]
avgperf += foldperf
avgperf /= len(val_sets)
#print(epoch, batchsz, avgperf)
if avgperf > bestperf:
bestperf = avgperf
bestpointer = pointer
best_param_list = [param1ind, param2ind, param3ind]
pointer +=1
return bestpointer, best_param_list, bestperf, all_predictions, all_losses
def cindex_score(y_true, y_pred):
g = tf.subtract(tf.expand_dims(y_pred, -1), y_pred)
g = tf.cast(g == 0.0, tf.float32) * 0.5 + tf.cast(g > 0.0, tf.float32)
f = tf.subtract(tf.expand_dims(y_true, -1), y_true) > 0.0
f = tf.matrix_band_part(tf.cast(f, tf.float32), -1, 0)
g = tf.reduce_sum(tf.multiply(g, f))
f = tf.reduce_sum(f)
return tf.where(tf.equal(g, 0), 0.0, g/f) #select
def plotLoss(history, batchind, epochind, param3ind, foldind):
figname = "b"+str(batchind) + "_e" + str(epochind) + "_" + str(param3ind) + "_" + str( foldind) + "_" + str(time.time())
plt.figure()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
#plt.legend(['trainloss', 'valloss', 'cindex', 'valcindex'], loc='upper left')
plt.legend(['trainloss', 'valloss'], loc='upper left')
plt.savefig("figures/"+figname +".png" , dpi=None, facecolor='w', edgecolor='w', orientation='portrait',
papertype=None, format=None,transparent=False, bbox_inches=None, pad_inches=0.1,frameon=None)
plt.close()
## PLOT CINDEX
plt.figure()
plt.title('model concordance index')
plt.ylabel('cindex')
plt.xlabel('epoch')
plt.plot(history.history['cindex_score'])
plt.plot(history.history['val_cindex_score'])
plt.legend(['traincindex', 'valcindex'], loc='upper left')
plt.savefig("figures/"+figname + "_acc.png" , dpi=None, facecolor='w', edgecolor='w', orientation='portrait',
papertype=None, format=None,transparent=False, bbox_inches=None, pad_inches=0.1,frameon=None)
plt.close()
def prepare_interaction_pairs(XD, XT, Y, rows, cols):
drugs = []
targets = []
targetscls = []
affinity=[]
for pair_ind in range(len(rows)):
drug = XD[rows[pair_ind]]
drugs.append(drug)
target=XT[cols[pair_ind]]
targets.append(target)
affinity.append(Y[rows[pair_ind],cols[pair_ind]])
drug_data = np.stack(drugs)
target_data = np.stack(targets)
return drug_data,target_data, affinity
def experiment(FLAGS, perfmeasure, deepmethod, foldcount=6): #5-fold cross validation + test
#Input
#XD: [drugs, features] sized array (features may also be similarities with other drugs
#XT: [targets, features] sized array (features may also be similarities with other targets
#Y: interaction values, can be real values or binary (+1, -1), insert value float("nan") for unknown entries
#perfmeasure: function that takes as input a list of correct and predicted outputs, and returns performance
#higher values should be better, so if using error measures use instead e.g. the inverse -error(Y, P)
#foldcount: number of cross-validation folds for settings 1-3, setting 4 always runs 3x3 cross-validation
dataset = DataSet( fpath = FLAGS.dataset_path, ### BUNU ARGS DA GUNCELLE
setting_no = FLAGS.problem_type, ##BUNU ARGS A EKLE
seqlen = FLAGS.max_seq_len,
smilen = FLAGS.max_smi_len,
need_shuffle = False )
# set character set size
FLAGS.charseqset_size = dataset.charseqset_size
FLAGS.charsmiset_size = dataset.charsmiset_size
XD, XT, Y = dataset.parse_data(FLAGS)
XD = np.asarray(XD)
XT = np.asarray(XT)
Y = np.asarray(Y)
drugcount = XD.shape[0]
print(drugcount)
targetcount = XT.shape[0]
print(targetcount)
FLAGS.drug_count = drugcount
FLAGS.target_count = targetcount
label_row_inds, label_col_inds = np.where(np.isnan(Y)==False) #basically finds the point address of affinity [x,y]
if not os.path.exists(figdir):
os.makedirs(figdir)
print(FLAGS.log_dir)
S1_avgperf, S1_avgloss, S1_teststd = nfold_1_2_3_setting_sample(XD, XT, Y, label_row_inds, label_col_inds,
perfmeasure, deepmethod, FLAGS, dataset)
logging("Setting " + str(FLAGS.problem_type), FLAGS)
logging("avg_perf = %.5f, avg_mse = %.5f, std = %.5f" %
(S1_avgperf, S1_avgloss, S1_teststd), FLAGS)
def run_regression( FLAGS ):
perfmeasure = get_cindex
deepmethod = build_combined_categorical
experiment(FLAGS, perfmeasure, deepmethod)
if __name__=="__main__":
FLAGS = argparser()
FLAGS.log_dir = FLAGS.log_dir + str(time.time()) + "/"
if not os.path.exists(FLAGS.log_dir):
os.makedirs(FLAGS.log_dir)
logging(str(FLAGS), FLAGS)
run_regression( FLAGS )