|
a/README.md |
|
b/README.md |
1 |
# About DeepDTA: deep drug-target binding affinity prediction |
1 |
# About DeepDTA: deep drug-target binding affinity prediction |
2 |
|
2 |
|
3 |
The approach used in this work is the modeling of protein sequences and compound 1D representations (SMILES) with convolutional neural networks (CNNs) to predict the binding affinity value of drug-target pairs. |
3 |
The approach used in this work is the modeling of protein sequences and compound 1D representations (SMILES) with convolutional neural networks (CNNs) to predict the binding affinity value of drug-target pairs. |
4 |
|
4 |
|
5 |
 |
5 |

|
6 |
# Installation |
6 |
# Installation |
7 |
|
7 |
|
8 |
## Data |
8 |
## Data |
9 |
|
9 |
|
10 |
Please see the [README](https://github.com/hkmztrk/DeepDTA/blob/master/data/README.md) for detailed explanation. |
10 |
Please see the [README](https://github.com/hkmztrk/DeepDTA/blob/master/data/README.md) for detailed explanation. |
11 |
|
11 |
|
12 |
## Requirements |
12 |
## Requirements |
13 |
|
13 |
|
14 |
You'll need to install following in order to run the codes. Refer to [deepdta.yml](https://github.com/hkmztrk/DeepDTA/blob/master/deepdta.yml) for a conda environment tested in Linux. |
14 |
You'll need to install following in order to run the codes. Refer to [deepdta.yml](https://github.com/hkmztrk/DeepDTA/blob/master/deepdta.yml) for a conda environment tested in Linux. |
15 |
|
15 |
|
16 |
* [Python 3.4 <=](https://www.python.org/downloads/) |
16 |
* [Python 3.4 <=](https://www.python.org/downloads/)
|
17 |
* [Keras 2.x](https://pypi.org/project/Keras/) |
17 |
* [Keras 2.x](https://pypi.org/project/Keras/)
|
18 |
* [Tensorflow 1.x](https://www.tensorflow.org/install/) |
18 |
* [Tensorflow 1.x](https://www.tensorflow.org/install/)
|
19 |
* numpy |
19 |
* numpy
|
20 |
* matplotlib |
20 |
* matplotlib
|
21 |
* scikit-learn |
21 |
* scikit-learn |
22 |
|
22 |
|
23 |
|
23 |
|
24 |
|
24 |
|
25 |
You have to place "data" folder under "source" directory. |
25 |
You have to place "data" folder under "source" directory. |
26 |
|
26 |
|
27 |
# Usage |
27 |
# Usage
|
28 |
``` |
28 |
```
|
29 |
python run_experiments.py --num_windows 32 \ |
29 |
python run_experiments.py --num_windows 32 \
|
30 |
--seq_window_lengths 8 12 \ |
30 |
--seq_window_lengths 8 12 \
|
31 |
--smi_window_lengths 4 8 \ |
31 |
--smi_window_lengths 4 8 \
|
32 |
--batch_size 256 \ |
32 |
--batch_size 256 \
|
33 |
--num_epoch 100 \ |
33 |
--num_epoch 100 \
|
34 |
--max_seq_len 1000 \ |
34 |
--max_seq_len 1000 \
|
35 |
--max_smi_len 100 \ |
35 |
--max_smi_len 100 \
|
36 |
--dataset_path 'data/kiba/' \ |
36 |
--dataset_path 'data/kiba/' \
|
37 |
--problem_type 1 \ |
37 |
--problem_type 1 \
|
38 |
--log_dir 'logs/' |
38 |
--log_dir 'logs/' |
39 |
|
39 |
|
40 |
|
40 |
|
41 |
``` |
41 |
``` |
42 |
|
42 |
|
43 |
|
43 |
|
44 |
|
44 |
|
45 |
|
45 |
|
46 |
|
46 |
|
47 |
**For citation:** |
47 |
**For citation:** |
48 |
|
48 |
|
49 |
``` |
49 |
```
|
50 |
@article{ozturk2018deepdta, |
50 |
@article{ozturk2018deepdta,
|
51 |
title={DeepDTA: deep drug--target binding affinity prediction}, |
51 |
title={DeepDTA: deep drug--target binding affinity prediction},
|
52 |
author={{\"O}zt{\"u}rk, Hakime and {\"O}zg{\"u}r, Arzucan and Ozkirimli, Elif}, |
52 |
author={{\"O}zt{\"u}rk, Hakime and {\"O}zg{\"u}r, Arzucan and Ozkirimli, Elif},
|
53 |
journal={Bioinformatics}, |
53 |
journal={Bioinformatics},
|
54 |
volume={34}, |
54 |
volume={34},
|
55 |
number={17}, |
55 |
number={17},
|
56 |
pages={i821--i829}, |
56 |
pages={i821--i829},
|
57 |
year={2018}, |
57 |
year={2018},
|
58 |
publisher={Oxford University Press} |
58 |
publisher={Oxford University Press}
|
59 |
} |
59 |
}
|
60 |
``` |
60 |
```
|