--- a +++ b/source/datahelper.py @@ -0,0 +1,169 @@ +import sys, re, math, time +import numpy as np +import matplotlib.pyplot as plt +import json +import pickle +import collections +from collections import OrderedDict +from matplotlib.pyplot import cm +#from keras.preprocessing.sequence import pad_sequences + + +## ######################## ## +# +# Define CHARSET, CHARLEN +# +## ######################## ## + +# CHARPROTSET = { 'A': 0, 'C': 1, 'D': 2, 'E': 3, 'F': 4, 'G': 5, 'H': 6, \ +# 'I': 7, 'K': 8, 'L': 9, 'M': 10, 'N': 11, 'P': 12, 'Q': 13, \ +# 'R': 14, 'S': 15, 'T': 16, 'V': 17, 'W': 18, 'Y': 19, 'X': 20, \ +# 'O': 20, 'U': 20, +# 'B': (2, 11), +# 'Z': (3, 13), +# 'J': (7, 9) } +# CHARPROTLEN = 21 + +CHARPROTSET = { "A": 1, "C": 2, "B": 3, "E": 4, "D": 5, "G": 6, + "F": 7, "I": 8, "H": 9, "K": 10, "M": 11, "L": 12, + "O": 13, "N": 14, "Q": 15, "P": 16, "S": 17, "R": 18, + "U": 19, "T": 20, "W": 21, + "V": 22, "Y": 23, "X": 24, + "Z": 25 } + +CHARPROTLEN = 25 + +CHARCANSMISET = { "#": 1, "%": 2, ")": 3, "(": 4, "+": 5, "-": 6, + ".": 7, "1": 8, "0": 9, "3": 10, "2": 11, "5": 12, + "4": 13, "7": 14, "6": 15, "9": 16, "8": 17, "=": 18, + "A": 19, "C": 20, "B": 21, "E": 22, "D": 23, "G": 24, + "F": 25, "I": 26, "H": 27, "K": 28, "M": 29, "L": 30, + "O": 31, "N": 32, "P": 33, "S": 34, "R": 35, "U": 36, + "T": 37, "W": 38, "V": 39, "Y": 40, "[": 41, "Z": 42, + "]": 43, "_": 44, "a": 45, "c": 46, "b": 47, "e": 48, + "d": 49, "g": 50, "f": 51, "i": 52, "h": 53, "m": 54, + "l": 55, "o": 56, "n": 57, "s": 58, "r": 59, "u": 60, + "t": 61, "y": 62} + +CHARCANSMILEN = 62 + +CHARISOSMISET = {"#": 29, "%": 30, ")": 31, "(": 1, "+": 32, "-": 33, "/": 34, ".": 2, + "1": 35, "0": 3, "3": 36, "2": 4, "5": 37, "4": 5, "7": 38, "6": 6, + "9": 39, "8": 7, "=": 40, "A": 41, "@": 8, "C": 42, "B": 9, "E": 43, + "D": 10, "G": 44, "F": 11, "I": 45, "H": 12, "K": 46, "M": 47, "L": 13, + "O": 48, "N": 14, "P": 15, "S": 49, "R": 16, "U": 50, "T": 17, "W": 51, + "V": 18, "Y": 52, "[": 53, "Z": 19, "]": 54, "\\": 20, "a": 55, "c": 56, + "b": 21, "e": 57, "d": 22, "g": 58, "f": 23, "i": 59, "h": 24, "m": 60, + "l": 25, "o": 61, "n": 26, "s": 62, "r": 27, "u": 63, "t": 28, "y": 64} + +CHARISOSMILEN = 64 + + +## ######################## ## +# +# Encoding Helpers +# +## ######################## ## + +# Y = -(np.log10(Y/(math.pow(math.e,9)))) + +def one_hot_smiles(line, MAX_SMI_LEN, smi_ch_ind): + X = np.zeros((MAX_SMI_LEN, len(smi_ch_ind))) #+1 + + for i, ch in enumerate(line[:MAX_SMI_LEN]): + X[i, (smi_ch_ind[ch]-1)] = 1 + + return X #.tolist() + +def one_hot_sequence(line, MAX_SEQ_LEN, smi_ch_ind): + X = np.zeros((MAX_SEQ_LEN, len(smi_ch_ind))) + for i, ch in enumerate(line[:MAX_SEQ_LEN]): + X[i, (smi_ch_ind[ch])-1] = 1 + + return X #.tolist() + + +def label_smiles(line, MAX_SMI_LEN, smi_ch_ind): + X = np.zeros(MAX_SMI_LEN) + for i, ch in enumerate(line[:MAX_SMI_LEN]): # x, smi_ch_ind, y + X[i] = smi_ch_ind[ch] + + return X #.tolist() + +def label_sequence(line, MAX_SEQ_LEN, smi_ch_ind): + X = np.zeros(MAX_SEQ_LEN) + + for i, ch in enumerate(line[:MAX_SEQ_LEN]): + X[i] = smi_ch_ind[ch] + + return X #.tolist() + + + +## ######################## ## +# +# DATASET Class +# +## ######################## ## +# works for large dataset +class DataSet(object): + def __init__(self, fpath, setting_no, seqlen, smilen, need_shuffle = False): + self.SEQLEN = seqlen + self.SMILEN = smilen + #self.NCLASSES = n_classes + self.charseqset = CHARPROTSET + self.charseqset_size = CHARPROTLEN + + self.charsmiset = CHARISOSMISET ###HERE CAN BE EDITED + self.charsmiset_size = CHARISOSMILEN + self.PROBLEMSET = setting_no + + # read raw file + # self._raw = self.read_sets( FLAGS) + + # iteration flags + # self._num_data = len(self._raw) + + + def read_sets(self, FLAGS): ### fpath should be the dataset folder /kiba/ or /davis/ + fpath = FLAGS.dataset_path + setting_no = FLAGS.problem_type + print("Reading %s start" % fpath) + + test_fold = json.load(open(fpath + "folds/test_fold_setting" + str(setting_no)+".txt")) + train_folds = json.load(open(fpath + "folds/train_fold_setting" + str(setting_no)+".txt")) + + return test_fold, train_folds + + def parse_data(self, FLAGS, with_label=True): + fpath = FLAGS.dataset_path + print("Read %s start" % fpath) + + ligands = json.load(open(fpath+"ligands_can.txt"), object_pairs_hook=OrderedDict) + proteins = json.load(open(fpath+"proteins.txt"), object_pairs_hook=OrderedDict) + + Y = pickle.load(open(fpath + "Y","rb"), encoding='latin1') ### TODO: read from raw + if FLAGS.is_log: + Y = -(np.log10(Y/(math.pow(10,9)))) + + XD = [] + XT = [] + + if with_label: + for d in ligands.keys(): + XD.append(label_smiles(ligands[d], self.SMILEN, self.charsmiset)) + + for t in proteins.keys(): + XT.append(label_sequence(proteins[t], self.SEQLEN, self.charseqset)) + else: + for d in ligands.keys(): + XD.append(one_hot_smiles(ligands[d], self.SMILEN, self.charsmiset)) + + for t in proteins.keys(): + XT.append(one_hot_sequence(proteins[t], self.SEQLEN, self.charseqset)) + + return XD, XT, Y + + + +