Diff of /source/arguments.py [000000] .. [8af014]

Switch to unified view

a b/source/arguments.py
1
import argparse
2
import os
3
4
5
6
def argparser():
7
  parser = argparse.ArgumentParser()
8
  # for model
9
  parser.add_argument(
10
      '--seq_window_lengths',
11
      type=int,
12
      nargs='+',
13
      help='Space seperated list of motif filter lengths. (ex, --window_lengths 4 8 12)'
14
  )
15
  parser.add_argument(
16
      '--smi_window_lengths',
17
      type=int,
18
      nargs='+',
19
      help='Space seperated list of motif filter lengths. (ex, --window_lengths 4 8 12)'
20
  )
21
  parser.add_argument(
22
      '--num_windows',
23
      type=int,
24
      nargs='+',
25
      help='Space seperated list of the number of motif filters corresponding to length list. (ex, --num_windows 100 200 100)'
26
  )
27
  parser.add_argument(
28
      '--num_hidden',
29
      type=int,
30
      default=0,
31
      help='Number of neurons in hidden layer.'
32
  )
33
  parser.add_argument(
34
      '--num_classes',
35
      type=int,
36
      default=0,
37
      help='Number of classes (families).'
38
  )
39
  parser.add_argument(
40
      '--max_seq_len',
41
      type=int,
42
      default=0,
43
      help='Length of input sequences.'
44
  )
45
  parser.add_argument(
46
      '--max_smi_len',
47
      type=int,
48
      default=0,
49
      help='Length of input sequences.'
50
  )
51
  # for learning
52
  parser.add_argument(
53
      '--learning_rate',
54
      type=float,
55
      default=0.001,
56
      help='Initial learning rate.'
57
  )
58
  parser.add_argument(
59
      '--num_epoch',
60
      type=int,
61
      default=100,
62
      help='Number of epochs to train.'
63
  )
64
  parser.add_argument(
65
      '--batch_size',
66
      type=int,
67
      default=256,
68
      help='Batch size. Must divide evenly into the dataset sizes.'
69
  )
70
  parser.add_argument(
71
      '--dataset_path',
72
      type=str,
73
      default='/data/kiba/',
74
      help='Directory for input data.'
75
  )
76
  parser.add_argument(
77
      '--problem_type',
78
      type=int,
79
      default=1,
80
      help='Type of the prediction problem (1-4)'
81
  )
82
  parser.add_argument(
83
      '--binary_th',
84
      type=float,
85
      default=0.0,
86
      help='Threshold to split data into binary classes'
87
  )
88
  parser.add_argument(
89
      '--is_log',
90
      type=int,
91
      default=0,
92
      help='use log transformation for Y'
93
  )
94
  parser.add_argument(
95
      '--checkpoint_path',
96
      type=str,
97
      default='',
98
      help='Path to write checkpoint file.'
99
  )
100
  parser.add_argument(
101
      '--log_dir',
102
      type=str,
103
      default='/tmp',
104
      help='Directory for log data.'
105
  )
106
107
108
109
  FLAGS, unparsed = parser.parse_known_args()
110
111
  # check validity
112
  #assert( len(FLAGS.window_lengths) == len(FLAGS.num_windows) )
113
114
  return FLAGS
115
116
117
118
119
def logging(msg, FLAGS):
120
  fpath = os.path.join( FLAGS.log_dir, "log.txt" )
121
  with open( fpath, "a" ) as fw:
122
    fw.write("%s\n" % msg)
123
  #print(msg)