Diff of /README.md [000000] .. [8af014]

Switch to unified view

a b/README.md
1
# About DeepDTA: deep drug-target binding affinity prediction
2
3
The approach used in this work is the modeling of protein sequences and compound 1D representations (SMILES) with convolutional neural networks (CNNs) to predict the binding affinity value of drug-target pairs.
4
5
![Figure](https://github.com/hkmztrk/DeepDTA/blob/master/docs/figures/deepdta.PNG)
6
# Installation
7
8
## Data
9
10
Please see the [README](https://github.com/hkmztrk/DeepDTA/blob/master/data/README.md) for detailed explanation.
11
12
## Requirements
13
14
You'll need to install following in order to run the codes. Refer to [deepdta.yml](https://github.com/hkmztrk/DeepDTA/blob/master/deepdta.yml) for a conda environment tested in Linux. 
15
16
*  [Python 3.4 <=](https://www.python.org/downloads/)
17
*  [Keras 2.x](https://pypi.org/project/Keras/)
18
*  [Tensorflow 1.x](https://www.tensorflow.org/install/)
19
*  numpy
20
*  matplotlib
21
*  scikit-learn
22
23
24
25
You have to place "data" folder under "source" directory. 
26
27
# Usage
28
```
29
python run_experiments.py --num_windows 32 \
30
                          --seq_window_lengths 8 12 \
31
                          --smi_window_lengths 4 8 \
32
                          --batch_size 256 \
33
                          --num_epoch 100 \
34
                          --max_seq_len 1000 \
35
                          --max_smi_len 100 \
36
                          --dataset_path 'data/kiba/' \
37
                          --problem_type 1 \
38
                          --log_dir 'logs/'
39
40
41
```
42
43
44
45
46
47
**For citation:**
48
49
```
50
@article{ozturk2018deepdta,
51
  title={DeepDTA: deep drug--target binding affinity prediction},
52
  author={{\"O}zt{\"u}rk, Hakime and {\"O}zg{\"u}r, Arzucan and Ozkirimli, Elif},
53
  journal={Bioinformatics},
54
  volume={34},
55
  number={17},
56
  pages={i821--i829},
57
  year={2018},
58
  publisher={Oxford University Press}
59
}
60
```