[796dd7]: / deepdta-toy / datahelper.py

Download this file

194 lines (136 with data), 6.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import sys, re, math, time
import numpy as np
import matplotlib.pyplot as plt
import json
import pickle
import collections
from collections import OrderedDict
from matplotlib.pyplot import cm
#from keras.preprocessing.sequence import pad_sequences
## ######################## ##
#
# Define CHARSET, CHARLEN
#
## ######################## ##
# CHARPROTSET = { 'A': 0, 'C': 1, 'D': 2, 'E': 3, 'F': 4, 'G': 5, 'H': 6, \
# 'I': 7, 'K': 8, 'L': 9, 'M': 10, 'N': 11, 'P': 12, 'Q': 13, \
# 'R': 14, 'S': 15, 'T': 16, 'V': 17, 'W': 18, 'Y': 19, 'X': 20, \
# 'O': 20, 'U': 20,
# 'B': (2, 11),
# 'Z': (3, 13),
# 'J': (7, 9) }
# CHARPROTLEN = 21
CHARPROTSET = { "A": 1, "C": 2, "B": 3, "E": 4, "D": 5, "G": 6,
"F": 7, "I": 8, "H": 9, "K": 10, "M": 11, "L": 12,
"O": 13, "N": 14, "Q": 15, "P": 16, "S": 17, "R": 18,
"U": 19, "T": 20, "W": 21,
"V": 22, "Y": 23, "X": 24,
"Z": 25 }
CHARPROTLEN = 25
CHARCANSMISET = { "#": 1, "%": 2, ")": 3, "(": 4, "+": 5, "-": 6,
".": 7, "1": 8, "0": 9, "3": 10, "2": 11, "5": 12,
"4": 13, "7": 14, "6": 15, "9": 16, "8": 17, "=": 18,
"A": 19, "C": 20, "B": 21, "E": 22, "D": 23, "G": 24,
"F": 25, "I": 26, "H": 27, "K": 28, "M": 29, "L": 30,
"O": 31, "N": 32, "P": 33, "S": 34, "R": 35, "U": 36,
"T": 37, "W": 38, "V": 39, "Y": 40, "[": 41, "Z": 42,
"]": 43, "_": 44, "a": 45, "c": 46, "b": 47, "e": 48,
"d": 49, "g": 50, "f": 51, "i": 52, "h": 53, "m": 54,
"l": 55, "o": 56, "n": 57, "s": 58, "r": 59, "u": 60,
"t": 61, "y": 62}
CHARCANSMILEN = 62
CHARISOSMISET = {"#": 29, "%": 30, ")": 31, "(": 1, "+": 32, "-": 33, "/": 34, ".": 2,
"1": 35, "0": 3, "3": 36, "2": 4, "5": 37, "4": 5, "7": 38, "6": 6,
"9": 39, "8": 7, "=": 40, "A": 41, "@": 8, "C": 42, "B": 9, "E": 43,
"D": 10, "G": 44, "F": 11, "I": 45, "H": 12, "K": 46, "M": 47, "L": 13,
"O": 48, "N": 14, "P": 15, "S": 49, "R": 16, "U": 50, "T": 17, "W": 51,
"V": 18, "Y": 52, "[": 53, "Z": 19, "]": 54, "\\": 20, "a": 55, "c": 56,
"b": 21, "e": 57, "d": 22, "g": 58, "f": 23, "i": 59, "h": 24, "m": 60,
"l": 25, "o": 61, "n": 26, "s": 62, "r": 27, "u": 63, "t": 28, "y": 64}
CHARISOSMILEN = 64
## ######################## ##
#
# Encoding Helpers
#
## ######################## ##
# Y = -(np.log10(Y/(math.pow(math.e,9))))
def one_hot_smiles(line, MAX_SMI_LEN, smi_ch_ind):
X = np.zeros((MAX_SMI_LEN, len(smi_ch_ind))) #+1
for i, ch in enumerate(line[:MAX_SMI_LEN]):
X[i, (smi_ch_ind[ch]-1)] = 1
return X #.tolist()
def one_hot_sequence(line, MAX_SEQ_LEN, smi_ch_ind):
X = np.zeros((MAX_SEQ_LEN, len(smi_ch_ind)))
for i, ch in enumerate(line[:MAX_SEQ_LEN]):
X[i, (smi_ch_ind[ch])-1] = 1
return X #.tolist()
def label_smiles(line, MAX_SMI_LEN, smi_ch_ind):
X = np.zeros(MAX_SMI_LEN)
for i, ch in enumerate(line[:MAX_SMI_LEN]): # x, smi_ch_ind, y
X[i] = smi_ch_ind[ch]
return X #.tolist()
def label_sequence(line, MAX_SEQ_LEN, smi_ch_ind):
X = np.zeros(MAX_SEQ_LEN)
for i, ch in enumerate(line[:MAX_SEQ_LEN]):
X[i] = smi_ch_ind[ch]
return X #.tolist()
## ######################## ##
#
# DATASET Class
#
## ######################## ##
# works for large dataset
class DataSet(object):
def __init__(self, fpath, fpath_test, setting_no, seqlen, smilen, need_shuffle = False):
### TODO : ADD SMILES TYPE CHOICE HERE
self.SEQLEN = seqlen
self.SMILEN = smilen
#self.NCLASSES = n_classes
self.charseqset = CHARPROTSET
self.charseqset_size = CHARPROTLEN
self.charsmiset = CHARISOSMISET ###HERE CAN BE EDITED
self.charsmiset_size = CHARISOSMILEN
self.PROBLEMSET = setting_no
# read raw file
#self._raw = self.read_sets( fpath, setting_no )
# iteration flags
# self._num_data = len(self._raw)
def read_sets(self, FLAGS): ### fpath should be the dataset folder /kiba/ or /davis/
print("Reading %s start" % FLAGS.train_path)
test_fold = json.load(open(FLAGS.test_path + "folds/test_fold.txt"))
train_folds = json.load(open(FLAGS.train_path + "folds/train_fold.txt"))
return test_fold, train_folds
def parse_train_test_data(self, FLAGS, with_label=True):
print("Read %s start" % FLAGS.train_path)
tr_ligands = json.load(open(FLAGS.train_path+"ligands_iso.txt"), object_pairs_hook=OrderedDict)
tr_proteins = json.load(open(FLAGS.train_path+"proteins.txt"), object_pairs_hook=OrderedDict)
tr_Y = pickle.load(open(FLAGS.train_path + "Y","rb"), encoding='latin1') ### TODO: read from raw
if FLAGS.isLog:
tr_Y = -(np.log10(tr_Y/(math.pow(math.e,9))))
print("Read %s start" % FLAGS.test_path)
te_ligands = json.load(open(FLAGS.test_path+"ligands.txt"), object_pairs_hook=OrderedDict)
te_proteins = json.load(open(FLAGS.test_path+"proteins.txt"), object_pairs_hook=OrderedDict)
te_Y = pickle.load(open(FLAGS.test_path + "Y","rb"), encoding='latin1') ### TODO: read from raw
tr_XD = []
tr_XT = []
te_XD = []
te_XT = []
if with_label:
for d in tr_ligands.keys():
tr_XD.append(label_smiles(tr_ligands[d], self.SMILEN, self.charsmiset))
for t in tr_proteins.keys():
tr_XT.append(label_sequence(tr_proteins[t], self.SEQLEN, self.charseqset))
for d in te_ligands.keys():
te_XD.append(label_smiles(te_ligands[d], self.SMILEN, self.charsmiset))
for t in te_proteins.keys():
te_XT.append(label_sequence(te_proteins[t], self.SEQLEN, self.charseqset))
else:
for d in tr_ligands.keys():
tr_XD.append(one_hot_smiles(tr_ligands[d], self.SMILEN, self.charsmiset))
for t in tr_proteins.keys():
tr_XT.append(one_hot_sequence(tr_proteins[t], self.SEQLEN, self.charseqset))
for d in te_ligands.keys():
te_XD.append(one_hot_smiles(te_ligands[d], self.SMILEN, self.charsmiset))
for t in te_proteins.keys():
te_XT.append(one_hot_sequence(te_proteins[t], self.SEQLEN, self.charseqset))
return tr_XD, tr_XT, tr_Y, te_XD, te_XT, te_Y