[796dd7]: / deepdta-toy / arguments.py

Download this file

131 lines (117 with data), 2.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import os
def argparser():
parser = argparse.ArgumentParser()
# for model
parser.add_argument(
'--seq_window_lengths',
type=int,
nargs='+',
help='Space seperated list of motif filter lengths. (ex, --window_lengths 4 8 12)'
)
parser.add_argument(
'--smi_window_lengths',
type=int,
nargs='+',
help='Space seperated list of motif filter lengths. (ex, --window_lengths 4 8 12)'
)
parser.add_argument(
'--num_windows',
type=int,
nargs='+',
help='Space seperated list of the number of motif filters corresponding to length list. (ex, --num_windows 100 200 100)'
)
parser.add_argument(
'--num_hidden',
type=int,
default=0,
help='Number of neurons in hidden layer.'
)
parser.add_argument(
'--num_classes',
type=int,
default=0,
help='Number of classes (families).'
)
parser.add_argument(
'--max_seq_len',
type=int,
default=0,
help='Length of input sequences.'
)
parser.add_argument(
'--max_smi_len',
type=int,
default=0,
help='Length of input sequences.'
)
# for learning
parser.add_argument(
'--learning_rate',
type=float,
default=0.001,
help='Initial learning rate.'
)
parser.add_argument(
'--num_epoch',
type=int,
default=100,
help='Number of epochs to train.'
)
parser.add_argument(
'--batch_size',
type=int,
default=256,
help='Batch size. Must divide evenly into the dataset sizes.'
)
parser.add_argument(
'--train_path',
type=str,
default='/data/DTC/',
help='Directory for input data.'
)
parser.add_argument(
'--test_path',
type=str,
default='',
help='Directory for input data.'
)
parser.add_argument(
'--problem_type',
type=int,
default=1,
help='Type of the prediction problem (1-4)'
)
parser.add_argument(
'--isLog',
type=int,
default=0,
help='Convert the values to log10^9'
)
parser.add_argument(
'--binary_th',
type=float,
default=0.0,
help='Threshold to split data into binary classes'
)
parser.add_argument(
'--checkpoint_path',
type=str,
default='',
help='Path to write checkpoint file.'
)
parser.add_argument(
'--log_dir',
type=str,
default='/tmp',
help='Directory for log data.'
)
FLAGS, unparsed = parser.parse_known_args()
# check validity
#assert( len(FLAGS.window_lengths) == len(FLAGS.num_windows) )
return FLAGS
def logging(msg, FLAGS):
fpath = os.path.join( FLAGS.log_dir, "log.txt" )
with open( fpath, "a" ) as fw:
fw.write("%s\n" % msg)
#print(msg)