|
a |
|
b/demo_heteroencoder.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"%load_ext autoreload\n", |
|
|
10 |
"%autoreload 2\n", |
|
|
11 |
"\n", |
|
|
12 |
"\n", |
|
|
13 |
"import numpy as np\n", |
|
|
14 |
"import rdkit\n", |
|
|
15 |
"from rdkit import Chem\n", |
|
|
16 |
"\n", |
|
|
17 |
"import h5py, ast, pickle\n", |
|
|
18 |
"\n", |
|
|
19 |
"# Occupy a GPU for the model to be loaded \n", |
|
|
20 |
"%env CUDA_DEVICE_ORDER=PCI_BUS_ID\n", |
|
|
21 |
"# GPU ID, if occupied change to an available GPU ID listed under !nvidia-smi\n", |
|
|
22 |
"%env CUDA_VISIBLE_DEVICES=2 \n", |
|
|
23 |
"\n", |
|
|
24 |
"from ddc_pub import ddc_v3 as ddc" |
|
|
25 |
] |
|
|
26 |
}, |
|
|
27 |
{ |
|
|
28 |
"cell_type": "markdown", |
|
|
29 |
"metadata": {}, |
|
|
30 |
"source": [ |
|
|
31 |
"# Load model" |
|
|
32 |
] |
|
|
33 |
}, |
|
|
34 |
{ |
|
|
35 |
"cell_type": "code", |
|
|
36 |
"execution_count": null, |
|
|
37 |
"metadata": {}, |
|
|
38 |
"outputs": [], |
|
|
39 |
"source": [ |
|
|
40 |
"# Import existing (trained) model\n", |
|
|
41 |
"# Ignore any warning(s) about training configuration or non-seriazable keyword arguments\n", |
|
|
42 |
"model_name = \"models/heteroencoder_model\"\n", |
|
|
43 |
"model = ddc.DDC(model_name=model_name)" |
|
|
44 |
] |
|
|
45 |
}, |
|
|
46 |
{ |
|
|
47 |
"cell_type": "markdown", |
|
|
48 |
"metadata": {}, |
|
|
49 |
"source": [ |
|
|
50 |
"# Load data from dataset" |
|
|
51 |
] |
|
|
52 |
}, |
|
|
53 |
{ |
|
|
54 |
"cell_type": "code", |
|
|
55 |
"execution_count": null, |
|
|
56 |
"metadata": {}, |
|
|
57 |
"outputs": [], |
|
|
58 |
"source": [ |
|
|
59 |
"dataset_name = \"datasets/CHEMBL25_TEST.h5\"\n", |
|
|
60 |
"npoints = 1000\n", |
|
|
61 |
"\n", |
|
|
62 |
"dataset = h5py.File(dataset_name, \"r\")\n", |
|
|
63 |
"mols = dataset[\"mols\"][:]\n", |
|
|
64 |
"# Select random npoints\n", |
|
|
65 |
"mols_in = mols[np.random.choice(len(mols), npoints, replace=False)]\n", |
|
|
66 |
"dataset.close()\n", |
|
|
67 |
"\n", |
|
|
68 |
"# Get the SMILES behind the binary mols\n", |
|
|
69 |
"smiles_in = [Chem.MolToSmiles(Chem.Mol(mol)) for mol in mols_in]" |
|
|
70 |
] |
|
|
71 |
}, |
|
|
72 |
{ |
|
|
73 |
"cell_type": "markdown", |
|
|
74 |
"metadata": {}, |
|
|
75 |
"source": [ |
|
|
76 |
"# Alternatively, use your own SMILES" |
|
|
77 |
] |
|
|
78 |
}, |
|
|
79 |
{ |
|
|
80 |
"cell_type": "code", |
|
|
81 |
"execution_count": null, |
|
|
82 |
"metadata": {}, |
|
|
83 |
"outputs": [], |
|
|
84 |
"source": [ |
|
|
85 |
"# Input SMILES to auto-encode\n", |
|
|
86 |
"smiles_in = ['Cc1cccn2c(CN(C)C3CCCc4ccccc43)c(C(=O)N3CCOCC3)nc12',\n", |
|
|
87 |
" 'COC(=O)NN=C(c1ccc(O)cc1)C1C(=O)N(C)C(=O)N(C)C1=O',\n", |
|
|
88 |
" 'CCc1cc(CC)nc(OCCCn2c3c(c4cc(-c5nc(C)no5)ccc42)CC(F)(F)CC3)n1',\n", |
|
|
89 |
" 'Cc1ccc2c(C(=O)Nc3ccccc3)c(SSc3c(C(=O)Nc4ccccc4)c4ccc(C)cc4n3C)n(C)c2c1',\n", |
|
|
90 |
" 'Cc1cccc(-c2ccccc2)c1Oc1nc(O)nc(NCc2ccc3occc3c2)n1',\n", |
|
|
91 |
" 'Cn1nnnc1SCC(=O)NN=Cc1ccc(Cl)cc1',\n", |
|
|
92 |
" 'COc1cccc(NS(=O)(=O)c2ccc(OC)c(OC)c2)c1',\n", |
|
|
93 |
" 'COc1ccc(OC)c(S(=O)(=O)n2nc(C)cc2C)c1',\n", |
|
|
94 |
" 'NCCCn1cc(C2=C(c3ccncc3)C(=O)NC2=O)c2ccccc21',\n", |
|
|
95 |
" 'CN(C)C(=O)N1CCN(C(c2ccc(Cl)cc2)c2cccnc2)CC1']\n", |
|
|
96 |
"\n", |
|
|
97 |
"# MUST convert SMILES to binary mols for the model to accept them (it re-converts them to SMILES internally)\n", |
|
|
98 |
"mols_in = [Chem.rdchem.Mol.ToBinary(Chem.MolFromSmiles(smiles)) for smiles in smiles_in]" |
|
|
99 |
] |
|
|
100 |
}, |
|
|
101 |
{ |
|
|
102 |
"cell_type": "code", |
|
|
103 |
"execution_count": null, |
|
|
104 |
"metadata": {}, |
|
|
105 |
"outputs": [], |
|
|
106 |
"source": [ |
|
|
107 |
"# Encode the binary mols into their latent representations\n", |
|
|
108 |
"latent = model.transform(model.vectorize(mols_in))" |
|
|
109 |
] |
|
|
110 |
}, |
|
|
111 |
{ |
|
|
112 |
"cell_type": "code", |
|
|
113 |
"execution_count": null, |
|
|
114 |
"metadata": {}, |
|
|
115 |
"outputs": [], |
|
|
116 |
"source": [ |
|
|
117 |
"# Convert back to SMILES\n", |
|
|
118 |
"smiles_out = []\n", |
|
|
119 |
"for lat in latent: \n", |
|
|
120 |
" smiles, _ = model.predict(lat, temp=0)\n", |
|
|
121 |
" smiles_out.append(smiles)" |
|
|
122 |
] |
|
|
123 |
}, |
|
|
124 |
{ |
|
|
125 |
"cell_type": "code", |
|
|
126 |
"execution_count": null, |
|
|
127 |
"metadata": {}, |
|
|
128 |
"outputs": [], |
|
|
129 |
"source": [ |
|
|
130 |
"# To compare the results, convert smiles_out to CANONICAL\n", |
|
|
131 |
"for idx, smiles in enumerate(smiles_out):\n", |
|
|
132 |
" mol = Chem.MolFromSmiles(smiles)\n", |
|
|
133 |
" if mol:\n", |
|
|
134 |
" smiles_out[idx] = Chem.MolToSmiles(mol, canonical=True)\n", |
|
|
135 |
" else:\n", |
|
|
136 |
" smiles_out[idx] = \"INVALID\"" |
|
|
137 |
] |
|
|
138 |
}, |
|
|
139 |
{ |
|
|
140 |
"cell_type": "code", |
|
|
141 |
"execution_count": null, |
|
|
142 |
"metadata": { |
|
|
143 |
"scrolled": true |
|
|
144 |
}, |
|
|
145 |
"outputs": [], |
|
|
146 |
"source": [ |
|
|
147 |
"smiles_in" |
|
|
148 |
] |
|
|
149 |
}, |
|
|
150 |
{ |
|
|
151 |
"cell_type": "code", |
|
|
152 |
"execution_count": null, |
|
|
153 |
"metadata": { |
|
|
154 |
"scrolled": true |
|
|
155 |
}, |
|
|
156 |
"outputs": [], |
|
|
157 |
"source": [ |
|
|
158 |
"smiles_out" |
|
|
159 |
] |
|
|
160 |
} |
|
|
161 |
], |
|
|
162 |
"metadata": { |
|
|
163 |
"kernelspec": { |
|
|
164 |
"display_name": "ddc", |
|
|
165 |
"language": "python", |
|
|
166 |
"name": "ddc" |
|
|
167 |
}, |
|
|
168 |
"language_info": { |
|
|
169 |
"codemirror_mode": { |
|
|
170 |
"name": "ipython", |
|
|
171 |
"version": 3 |
|
|
172 |
}, |
|
|
173 |
"file_extension": ".py", |
|
|
174 |
"mimetype": "text/x-python", |
|
|
175 |
"name": "python", |
|
|
176 |
"nbconvert_exporter": "python", |
|
|
177 |
"pygments_lexer": "ipython3", |
|
|
178 |
"version": "3.6.7" |
|
|
179 |
} |
|
|
180 |
}, |
|
|
181 |
"nbformat": 4, |
|
|
182 |
"nbformat_minor": 2 |
|
|
183 |
} |