--- a +++ b/demo_heteroencoder.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "\n", + "import numpy as np\n", + "import rdkit\n", + "from rdkit import Chem\n", + "\n", + "import h5py, ast, pickle\n", + "\n", + "# Occupy a GPU for the model to be loaded \n", + "%env CUDA_DEVICE_ORDER=PCI_BUS_ID\n", + "# GPU ID, if occupied change to an available GPU ID listed under !nvidia-smi\n", + "%env CUDA_VISIBLE_DEVICES=2 \n", + "\n", + "from ddc_pub import ddc_v3 as ddc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import existing (trained) model\n", + "# Ignore any warning(s) about training configuration or non-seriazable keyword arguments\n", + "model_name = \"models/heteroencoder_model\"\n", + "model = ddc.DDC(model_name=model_name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load data from dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset_name = \"datasets/CHEMBL25_TEST.h5\"\n", + "npoints = 1000\n", + "\n", + "dataset = h5py.File(dataset_name, \"r\")\n", + "mols = dataset[\"mols\"][:]\n", + "# Select random npoints\n", + "mols_in = mols[np.random.choice(len(mols), npoints, replace=False)]\n", + "dataset.close()\n", + "\n", + "# Get the SMILES behind the binary mols\n", + "smiles_in = [Chem.MolToSmiles(Chem.Mol(mol)) for mol in mols_in]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Alternatively, use your own SMILES" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Input SMILES to auto-encode\n", + "smiles_in = ['Cc1cccn2c(CN(C)C3CCCc4ccccc43)c(C(=O)N3CCOCC3)nc12',\n", + " 'COC(=O)NN=C(c1ccc(O)cc1)C1C(=O)N(C)C(=O)N(C)C1=O',\n", + " 'CCc1cc(CC)nc(OCCCn2c3c(c4cc(-c5nc(C)no5)ccc42)CC(F)(F)CC3)n1',\n", + " 'Cc1ccc2c(C(=O)Nc3ccccc3)c(SSc3c(C(=O)Nc4ccccc4)c4ccc(C)cc4n3C)n(C)c2c1',\n", + " 'Cc1cccc(-c2ccccc2)c1Oc1nc(O)nc(NCc2ccc3occc3c2)n1',\n", + " 'Cn1nnnc1SCC(=O)NN=Cc1ccc(Cl)cc1',\n", + " 'COc1cccc(NS(=O)(=O)c2ccc(OC)c(OC)c2)c1',\n", + " 'COc1ccc(OC)c(S(=O)(=O)n2nc(C)cc2C)c1',\n", + " 'NCCCn1cc(C2=C(c3ccncc3)C(=O)NC2=O)c2ccccc21',\n", + " 'CN(C)C(=O)N1CCN(C(c2ccc(Cl)cc2)c2cccnc2)CC1']\n", + "\n", + "# MUST convert SMILES to binary mols for the model to accept them (it re-converts them to SMILES internally)\n", + "mols_in = [Chem.rdchem.Mol.ToBinary(Chem.MolFromSmiles(smiles)) for smiles in smiles_in]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Encode the binary mols into their latent representations\n", + "latent = model.transform(model.vectorize(mols_in))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert back to SMILES\n", + "smiles_out = []\n", + "for lat in latent: \n", + " smiles, _ = model.predict(lat, temp=0)\n", + " smiles_out.append(smiles)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# To compare the results, convert smiles_out to CANONICAL\n", + "for idx, smiles in enumerate(smiles_out):\n", + " mol = Chem.MolFromSmiles(smiles)\n", + " if mol:\n", + " smiles_out[idx] = Chem.MolToSmiles(mol, canonical=True)\n", + " else:\n", + " smiles_out[idx] = \"INVALID\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "smiles_in" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "smiles_out" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ddc", + "language": "python", + "name": "ddc" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}