#!/usr/bin/env python3
"""
This tool is used to save fetched papers to Zotero library after human approval.
"""
import logging
from typing import Annotated, Any
from langchain_core.messages import ToolMessage
from langchain_core.tools import tool
from langchain_core.tools.base import InjectedToolCallId
from langgraph.types import Command
from langgraph.prebuilt import InjectedState
from pydantic import BaseModel, Field
from .utils.write_helper import ZoteroWriteData
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ZoteroSaveInput(BaseModel):
"""Input schema for the Zotero save tool."""
tool_call_id: Annotated[str, InjectedToolCallId]
collection_path: str = Field(
description="The path where the paper should be saved in the Zotero library."
)
state: Annotated[dict, InjectedState]
@tool(args_schema=ZoteroSaveInput, parse_docstring=True)
def zotero_write(
tool_call_id: Annotated[str, InjectedToolCallId],
collection_path: str,
state: Annotated[dict, InjectedState],
) -> Command[Any]:
"""
Use this tool to save previously fetched papers from Semantic Scholar
to a specified Zotero collection after human approval.
This tool checks if the user has approved the save operation via the
zotero_review. If approved, it will save the papers to the
approved collection path.
Args:
tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
collection_path (str): The Zotero collection path where papers should be saved.
state (Annotated[dict, InjectedState]): The state containing previously fetched papers.
user_confirmation (str, optional): User confirmation message when interrupt is
not available.
Returns:
Command[Any]: The save results and related information.
"""
# Create write data object to organize variables
write_data = ZoteroWriteData(tool_call_id, collection_path, state)
try:
# Process the write operation
results = write_data.process_write()
return Command(
update={
"messages": [
ToolMessage(
content=results["content"],
tool_call_id=tool_call_id,
artifact=results["fetched_papers"],
)
],
"zotero_write_approval_status": {}, # Clear approval info
}
)
except ValueError as e:
# Only handle collection not found errors with a Command
if "collection path" in str(e).lower():
return Command(
update={
"messages": [
ToolMessage(
content=str(e),
tool_call_id=tool_call_id,
)
],
}
)
# Let other ValueErrors (like no papers) propagate up
raise