[9d3784]: / aiagents4pharma / talk2scholars / tools / pdf / question_and_answer.py

Download this file

218 lines (186 with data), 8.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python3
"""
question_and_answer: Tool for performing Q&A on PDF documents using retrieval augmented generation.
This module provides functionality to extract text from PDF binary data, split it into
chunks, retrieve relevant segments via a vector store, and generate an answer to a
user-provided question using a language model chain.
"""
import io
import logging
from typing import Annotated, Dict, Any, List
from PyPDF2 import PdfReader
from pydantic import BaseModel, Field
import hydra
from langchain.chains.question_answering import load_qa_chain
from langchain.docstore.document import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_core.messages import ToolMessage
from langchain_core.tools import tool
from langchain_core.tools.base import InjectedToolCallId
from langchain_core.embeddings import Embeddings
from langchain_community.vectorstores import Annoy
from langchain_community.document_loaders import PyPDFLoader
from langchain_openai import OpenAIEmbeddings
from langgraph.types import Command
from langgraph.prebuilt import InjectedState
# Set up logging.
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Load configuration using Hydra.
with hydra.initialize(version_base=None, config_path="../../configs"):
cfg = hydra.compose(
config_name="config", overrides=["tools/question_and_answer=default"]
)
cfg = cfg.tools.question_and_answer
logger.info("Loaded Question and Answer tool configuration.")
class QuestionAndAnswerInput(BaseModel):
"""
Input schema for the PDF Question and Answer tool.
Attributes:
question (str): The question to ask regarding the PDF content.
tool_call_id (str): Unique identifier for the tool call, injected automatically.
"""
question: str = Field(description="The question to ask regarding the PDF content.")
tool_call_id: Annotated[str, InjectedToolCallId]
state: Annotated[dict, InjectedState]
def extract_text_from_pdf_data(pdf_bytes: bytes) -> str:
"""
Extract text content from PDF binary data.
This function uses PyPDF2 to read the provided PDF bytes and concatenates the text
extracted from each page.
Args:
pdf_bytes (bytes): The binary data of the PDF document.
Returns:
str: The complete text extracted from the PDF.
"""
reader = PdfReader(io.BytesIO(pdf_bytes))
text = ""
for page in reader.pages:
page_text = page.extract_text() or ""
text += page_text
return text
def generate_answer(
question: str, pdf_bytes: bytes, llm_model: BaseChatModel
) -> Dict[str, Any]:
"""
Generate an answer for a question using retrieval augmented generation on PDF content.
This function extracts text from the PDF data, splits the text into manageable chunks,
performs a similarity search to retrieve the most relevant segments, and then uses a
question-answering chain (built using the provided llm_model) to generate an answer.
Args:
question (str): The question to be answered.
pdf_bytes (bytes): The binary content of the PDF document.
llm_model (BaseChatModel): The language model instance to use for answering.
Returns:
Dict[str, Any]: A dictionary containing the answer generated by the language model.
"""
text = extract_text_from_pdf_data(pdf_bytes)
logger.info("Extracted text from PDF.")
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=cfg.chunk_size, chunk_overlap=cfg.chunk_overlap
)
chunks = text_splitter.split_text(text)
documents: List[Document] = [Document(page_content=chunk) for chunk in chunks]
logger.info("Split PDF text into %d chunks.", len(documents))
embeddings = OpenAIEmbeddings(openai_api_key=cfg.openai_api_key)
vector_store = Annoy.from_documents(documents, embeddings)
search_results = vector_store.similarity_search(question, k=cfg.num_retrievals)
logger.info("Retrieved %d relevant document chunks.", len(search_results))
# Use the provided llm_model to build the QA chain.
qa_chain = load_qa_chain(llm_model, chain_type=cfg.qa_chain_type)
answer = qa_chain.invoke(
input={"input_documents": search_results, "question": question}
)
return answer
def generate_answer2(
question: str, pdf_url: str, text_embedding_model: Embeddings
) -> Dict[str, Any]:
"""
Generate an answer for a question using retrieval augmented generation on PDF content.
This function extracts text from the PDF data, splits the text into manageable chunks,
performs a similarity search to retrieve the most relevant segments, and then uses a
question-answering chain (built using the provided llm_model) to generate an answer.
Args:
question (str): The question to be answered.
pdf_bytes (bytes): The binary content of the PDF document.
llm_model (BaseChatModel): The language model instance to use for answering.
Returns:
Dict[str, Any]: A dictionary containing the answer generated by the language model.
"""
# text = extract_text_from_pdf_data(pdf_bytes)
# logger.info("Extracted text from PDF.")
logger.log(logging.INFO, "searching the article with the question: %s", question)
# Load the article
# loader = PyPDFLoader(state['pdf_file_name'])
# loader = PyPDFLoader("https://arxiv.org/pdf/2310.08365")
loader = PyPDFLoader(pdf_url)
# Load the pages of the article
pages = []
for page in loader.lazy_load():
pages.append(page)
# Set up text embedding model
# text_embedding_model = state['text_embedding_model']
# text_embedding_model = OpenAIEmbeddings(openai_api_key=cfg.openai_api_key)
logging.info("Loaded text embedding model %s", text_embedding_model)
# Create a vector store from the pages
vector_store = InMemoryVectorStore.from_documents(pages, text_embedding_model)
# Search the article with the question
docs = vector_store.similarity_search(question)
# Return the content of the pages
return "\n".join([doc.page_content for doc in docs])
# return answer
@tool(args_schema=QuestionAndAnswerInput)
def question_and_answer_tool(
question: str,
tool_call_id: Annotated[str, InjectedToolCallId],
state: Annotated[dict, InjectedState],
) -> Dict[str, Any]:
"""
Answer a question using PDF content stored in the state via retrieval augmented generation.
This tool retrieves the PDF binary data from the state (under the key "pdf_data"), extracts its
textual content, and generates an answer to the specified question. It also extracts the
llm_model (of type BaseChatModel) from the state to use for answering.
Args:
question (str): The question regarding the PDF content.
tool_call_id (str): Unique identifier for the current tool call.
state (dict): A dictionary representing the current state, expected to contain PDF data
under the key "pdf_data" with a sub-key "pdf_object" for the binary content,
and a key "llm_model" holding the language model instance.
Returns:
Dict[str, Any]: A dictionary containing the generated answer or an error message.
"""
logger.info("Starting PDF Question and Answer tool using PDF data from state.")
# print (state['text_embedding_model'])
text_embedding_model = state["text_embedding_model"]
pdf_state = state.get("pdf_data")
if not pdf_state:
error_msg = "No pdf_data found in state."
logger.error(error_msg)
return Command(
update={
"messages": [ToolMessage(content=error_msg, tool_call_id=tool_call_id)]
}
)
pdf_bytes = pdf_state.get("pdf_object")
if not pdf_bytes:
error_msg = "PDF binary data is missing in the pdf_data from state."
logger.error(error_msg)
return Command(
update={
"messages": [ToolMessage(content=error_msg, tool_call_id=tool_call_id)]
}
)
pdf_url = pdf_state.get("pdf_url")
# Retrieve llm_model from state; use a default if not provided.
llm_model = state.get("llm_model")
if not llm_model:
logger.error("Missing LLM model instance in state.")
return {"error": "No LLM model found in state."}
# answer = generate_answer(question, pdf_bytes, llm_model)
print(pdf_url)
answer = generate_answer2(question, pdf_url, text_embedding_model)
# logger.info("Generated answer: %s", answer)
return answer