#!/usr/bin/env python3
'''
Talk2Cells: A Streamlit app for the Talk2Cells graph.
'''
import os
import sys
import random
import streamlit as st
from streamlit_feedback import streamlit_feedback
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.messages import ChatMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tracers.context import collect_runs
from langchain.callbacks.tracers import LangChainTracer
from langsmith import Client
sys.path.append('./')
from aiagents4pharma.talk2cells.agents.scp_agent import get_app
st.set_page_config(page_title="Talk2Cells", page_icon="🤖", layout="wide")
# Check if env variable OPENAI_API_KEY exists
if "OPENAI_API_KEY" not in os.environ:
st.error("Please set the OPENAI_API_KEY environment \
variable in the terminal where you run the app.")
st.stop()
# Create a chat prompt template
prompt = ChatPromptTemplate.from_messages([
("system", "Welcome to Talk2Cells!"),
MessagesPlaceholder(variable_name='chat_history', optional=True),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
])
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Initialize project_name for Langsmith
if "project_name" not in st.session_state:
# st.session_state.project_name = str(st.session_state.user_name) + '@' + str(uuid.uuid4())
st.session_state.project_name = 'Talk2Cells-' + str(random.randint(1000, 9999))
# Initialize run_id for Langsmith
if "run_id" not in st.session_state:
st.session_state.run_id = None
# Initialize graph
if "unique_id" not in st.session_state:
st.session_state.unique_id = random.randint(1, 1000)
if "app" not in st.session_state:
st.session_state.app = get_app(st.session_state.unique_id)
# Get the app
app = st.session_state.app
def _submit_feedback(user_response):
'''
Function to submit feedback to the developers.
'''
client = Client()
client.create_feedback(
st.session_state.run_id,
key="feedback",
score=1 if user_response['score'] == "👍" else 0,
comment=user_response['text']
)
st.info("Your feedback is on its way to the developers. Thank you!", icon="🚀")
# Main layout of the app split into two columns
main_col1, main_col2 = st.columns([3, 7])
# First column
with main_col1:
with st.container(border=True):
# Title
st.write("""
<h3 style='margin: 0px; padding-bottom: 10px; font-weight: bold;'>
🤖 Talk2Cells
</h3>
""",
unsafe_allow_html=True)
# LLM panel (Only at the front-end for now)
llms = ["gpt-4o-mini", "gpt-4-turbo", "gpt-3.5-turbo"]
llm_option = st.selectbox(
"Pick an LLM to power the agent",
llms,
index=0,
key="st_selectbox_llm"
)
# Upload files (placeholder)
# uploaded_file = st.file_uploader(
# "Upload sequencing data",
# accept_multiple_files=False,
# type=["h5ad"],
# help='''Upload a single h5ad file containing the sequencing data.
# The file should be in the AnnData format.'''
# )
with st.container(border=False, height=500):
prompt = st.chat_input("Say something ...", key="st_chat_input")
# Second column
with main_col2:
# Chat history panel
with st.container(border=True, height=575):
st.write("#### 💬 Chat History")
# Display chat messages
for count, message in enumerate(st.session_state.messages):
with st.chat_message(message["content"].role,
avatar="🤖"
if message["content"].role != 'user'
else "👩🏻💻"):
st.markdown(message["content"].content)
st.empty()
# When the user asks a question
if prompt:
# Create a key 'uploaded_file' to read the uploaded file
# if uploaded_file:
# st.session_state.article_pdf = uploaded_file.read().decode("utf-8")
# Display user prompt
prompt_msg = ChatMessage(prompt, role="user")
st.session_state.messages.append(
{
"type": "message",
"content": prompt_msg
}
)
with st.chat_message("user", avatar="👩🏻💻"):
st.markdown(prompt)
st.empty()
with st.chat_message("assistant", avatar="🤖"):
# with st.spinner("Fetching response ..."):
with st.spinner():
# Get chat history
history = [(m["content"].role, m["content"].content)
for m in st.session_state.messages
if m["type"] == "message"]
# Convert chat history to ChatMessage objects
chat_history = [
SystemMessage(content=m[1]) if m[0] == "system" else
HumanMessage(content=m[1]) if m[0] == "human" else
AIMessage(content=m[1])
for m in history
]
# Create config for the agent
config = {"configurable": {"thread_id": st.session_state.unique_id}}
# Update the agent state with the selected LLM model
current_state = app.get_state(config)
# app.update_state(config, {"llm_model": llm_option})
current_state = app.get_state(config)
# st.markdown(current_state.values["llm_model"])
# Set the environment variable AIAGENTS4PHARMA_LLM_MODEL
os.environ["AIAGENTS4PHARMA_LLM_MODEL"] = llm_option
# # Get response from the agent
# response = app.invoke(
# {"messages": [HumanMessage(content=prompt)]},
# config=config
# )
ERROR_FLAG = False
with collect_runs() as cb:
# Add Langsmith tracer
tracer = LangChainTracer(
project_name=st.session_state.project_name
)
# Get response from the agent
response = app.invoke(
{"messages": [HumanMessage(content=prompt)]},
config=config|{"callbacks": [tracer]}
)
st.session_state.run_id = cb.traced_runs[-1].id
# Print the response
# print (response)
# Add assistant response to chat history
assistant_msg = ChatMessage(response["messages"][-1].content,
role="assistant")
st.session_state.messages.append({
"type": "message",
"content": assistant_msg
})
# Display the response in the chat
st.markdown(response["messages"][-1].content)
st.empty()
# Collect feedback and display the thumbs feedback
if st.session_state.get("run_id"):
feedback = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional] Please provide an explanation",
on_submit=_submit_feedback,
key=f"feedback_{st.session_state.run_id}"
)