[9d3784]: / app / frontend / streamlit_app_talk2aiagents4pharma.py

Download this file

418 lines (379 with data), 18.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#!/usr/bin/env python3
'''
A Streamlit app for the Talk2AIAgents4Pharma graph.
'''
import os
import sys
import random
import hydra
import streamlit as st
from streamlit_feedback import streamlit_feedback
from langchain_openai import ChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.messages import ChatMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from utils import streamlit_utils
st.set_page_config(page_title="Talk2AIAgents4Pharma",
page_icon="🤖",
layout="wide",
initial_sidebar_state="collapsed",)
# Set the logo
st.logo(
image='docs/assets/VPE.png',
size='large',
link='https://github.com/VirtualPatientEngine'
)
# Check if env variables OPENAI_API_KEY and/or
# NVIDIA_API_KEY exist
if "OPENAI_API_KEY" not in os.environ or "NVIDIA_API_KEY" not in os.environ:
st.error("Please set the OPENAI_API_KEY and NVIDIA_API_KEY "
"environment variables in the terminal where you run "
"the app. For more information, please refer to our "
"[documentation](https://virtualpatientengine.github.io/AIAgents4Pharma/#option-2-git).")
st.stop()
# Import the agent
sys.path.append('./')
from aiagents4pharma.talk2aiagents4pharma.agents.main_agent import get_app
# Initialize configuration
hydra.core.global_hydra.GlobalHydra.instance().clear()
if "config" not in st.session_state:
# Load Hydra configuration
with hydra.initialize(
version_base=None,
config_path="../../aiagents4pharma/talk2knowledgegraphs/configs",
):
cfg_t2kg = hydra.compose(config_name="config", overrides=["app/frontend=default"])
cfg_t2kg = cfg_t2kg.app.frontend
st.session_state.config = cfg_t2kg
else:
cfg_t2kg = st.session_state.config
########################################################################################
# Streamlit app
########################################################################################
# Create a chat prompt template
prompt = ChatPromptTemplate.from_messages([
("system", "Welcome to Talk2AIAgents4Pharma!"),
MessagesPlaceholder(variable_name='chat_history', optional=True),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
])
# Initialize current user
if "current_user" not in st.session_state:
st.session_state.current_user = cfg_t2kg.default_user
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
## T2B
# Initialize sbml_file_path
if "sbml_file_path" not in st.session_state:
st.session_state.sbml_file_path = None
## T2KG
# Initialize session state for pre-clinical data package uploader
if "data_package_key" not in st.session_state:
st.session_state.data_package_key = 0
# Initialize session state for patient gene expression data uploader
if "endotype_key" not in st.session_state:
st.session_state.endotype_key = 0
# Initialize session state for uploaded files
if "uploaded_files" not in st.session_state:
st.session_state.uploaded_files = []
# Make directories if not exists
os.makedirs(cfg_t2kg.upload_data_dir, exist_ok=True)
# Initialize project_name for Langsmith
if "project_name" not in st.session_state:
# st.session_state.project_name = str(st.session_state.user_name) + '@' + str(uuid.uuid4())
st.session_state.project_name = 'T2AA4P-' + str(random.randint(1000, 9999))
# Initialize run_id for Langsmith
if "run_id" not in st.session_state:
st.session_state.run_id = None
# Initialize graph
if "unique_id" not in st.session_state:
st.session_state.unique_id = random.randint(1, 1000)
if "app" not in st.session_state:
if "llm_model" not in st.session_state:
st.session_state.app = get_app(st.session_state.unique_id,
llm_model=ChatOpenAI(model='gpt-4o-mini',
temperature=0))
else:
print (st.session_state.llm_model)
st.session_state.app = get_app(st.session_state.unique_id,
llm_model=streamlit_utils.get_base_chat_model(
st.session_state.llm_model))
if "topk_nodes" not in st.session_state:
# Subgraph extraction settings
st.session_state.topk_nodes = cfg_t2kg.reasoning_subgraph_topk_nodes
st.session_state.topk_edges = cfg_t2kg.reasoning_subgraph_topk_edges
# Get the app
app = st.session_state.app
# Apply custom CSS
streamlit_utils.apply_css()
# Sidebar
with st.sidebar:
st.markdown("**âš™ī¸ Subgraph Extraction Settings**")
topk_nodes = st.slider(
"Top-K (Nodes)",
cfg_t2kg.reasoning_subgraph_topk_nodes_min,
cfg_t2kg.reasoning_subgraph_topk_nodes_max,
st.session_state.topk_nodes,
key="st_slider_topk_nodes",
)
st.session_state.topk_nodes = topk_nodes
topk_edges = st.slider(
"Top-K (Edges)",
cfg_t2kg.reasoning_subgraph_topk_nodes_min,
cfg_t2kg.reasoning_subgraph_topk_nodes_max,
st.session_state.topk_edges,
key="st_slider_topk_edges",
)
st.session_state.topk_edges = topk_edges
# Main layout of the app split into two columns
main_col1, main_col2 = st.columns([3, 7])
# First column
with main_col1:
with st.container(border=True):
# Title
st.write("""
<h3 style='margin: 0px; padding-bottom: 10px; font-weight: bold;'>
Talk2AIAgents4Pharma
</h3>
""",
unsafe_allow_html=True)
# LLM model panel
llms = ["OpenAI/gpt-4o-mini",
"NVIDIA/llama-3.3-70b-instruct",
"NVIDIA/llama-3.1-70b-instruct",
"NVIDIA/llama-3.1-405b-instruct"]
st.selectbox(
"Pick an LLM to power the agent",
llms,
index=0,
key="llm_model",
on_change=streamlit_utils.update_llm_model,
help="Used for tool calling and generating responses."
)
# Text embedding model panel
text_models = ["NVIDIA/llama-3.2-nv-embedqa-1b-v2",
"OpenAI/text-embedding-ada-002"]
st.selectbox(
"Pick a text embedding model",
text_models,
index=0,
key="text_embedding_model",
on_change=streamlit_utils.update_text_embedding_model,
kwargs={"app": app},
help="Used for Retrival Augmented Generation (RAG) and other tasks."
)
# T2B Upload files
uploaded_sbml_file = streamlit_utils.get_t2b_uploaded_files(app)
# T2KG Upload files
streamlit_utils.get_uploaded_files(cfg_t2kg)
# Help text
st.button("Know more ↗",
# icon="â„šī¸",
on_click=streamlit_utils.help_button,
use_container_width=False)
with st.container(border=False, height=500):
prompt = st.chat_input("Say something ...", key="st_chat_input")
# Second column
with main_col2:
# Chat history panel
with st.container(border=True, height=600):
st.write("#### đŸ’Ŧ Chat History")
# Display history of messages
for count, message in enumerate(st.session_state.messages):
if message["type"] == "message":
with st.chat_message(message["content"].role,
avatar="🤖"
if message["content"].role != 'user'
else "👩đŸģ‍đŸ’ģ"):
st.markdown(message["content"].content)
st.empty()
elif message["type"] == "button":
if st.button(message["content"],
key=message["key"]):
# Trigger the question
prompt = message["question"]
st.empty()
elif message["type"] == "plotly":
streamlit_utils.render_plotly(message["content"],
key=message["key"],
title=message["title"],
y_axis_label=message["y_axis_label"],
x_axis_label=message["x_axis_label"],
# tool_name=message["tool_name"],
save_chart=False)
st.empty()
elif message["type"] == "toggle":
streamlit_utils.render_toggle(key=message["key"],
toggle_text=message["content"],
toggle_state=message["toggle_state"],
save_toggle=False)
st.empty()
elif message["type"] == "graph":
streamlit_utils.render_graph(
message["content"], key=message["key"], save_graph=False
)
st.empty()
elif message["type"] == "dataframe":
if 'tool_name' in message:
if message['tool_name'] == 'get_annotation':
df_selected = message["content"]
st.dataframe(df_selected,
use_container_width=True,
key=message["key"],
hide_index=True,
column_config={
"Id": st.column_config.LinkColumn(
label="Id",
help="Click to open the link associated with the Id",
validate=r"^http://.*$", # Ensure the link is valid
display_text=r"^http://identifiers\.org/(.*?)$"
),
"Species Name": st.column_config.TextColumn("Species Name"),
"Description": st.column_config.TextColumn("Description"),
"Database": st.column_config.TextColumn("Database"),
}
)
elif message['tool_name'] == 'search_models':
df_selected = message["content"]
st.dataframe(df_selected,
use_container_width=True,
key=message["key"],
hide_index=True,
column_config={
"url": st.column_config.LinkColumn(
label="ID",
help="Click to open the link associated with the Id",
validate=r"^http://.*$", # Ensure the link is valid
display_text=r"^https://www.ebi.ac.uk/biomodels/(.*?)$"
),
"name": st.column_config.TextColumn("Name"),
"format": st.column_config.TextColumn("Format"),
"submissionDate": st.column_config.TextColumn("Submission Date"),
}
)
else:
streamlit_utils.render_table(message["content"],
key=message["key"],
# tool_name=message["tool_name"],
save_table=False)
st.empty()
# Display intro message only the first time
# i.e. when there are no messages in the chat
if not st.session_state.messages:
with st.chat_message("assistant", avatar="🤖"):
with st.spinner("Initializing the agent ..."):
config = {"configurable":
{"thread_id": st.session_state.unique_id}
}
# Update the agent state with the selected LLM model
current_state = app.get_state(config)
app.update_state(
config,
{"llm_model": streamlit_utils.get_base_chat_model(
st.session_state.llm_model),
"text_embedding_model": streamlit_utils.get_text_embedding_model(
st.session_state.text_embedding_model),
"embedding_model": streamlit_utils.get_text_embedding_model(
st.session_state.text_embedding_model),
"uploaded_files": st.session_state.uploaded_files,
"topk_nodes": st.session_state.topk_nodes,
"topk_edges": st.session_state.topk_edges,
"dic_source_graph": [
{
"name": st.session_state.config["kg_name"],
"kg_pyg_path": st.session_state.config["kg_pyg_path"],
"kg_text_path": st.session_state.config["kg_text_path"],
}
]}
)
intro_prompt = "Tell your name and about yourself. Always start with a greeting."
intro_prompt += " and tell about the tools you can run to perform analysis with short description."
intro_prompt += " We have provided starter questions (separately) outisde your response."
intro_prompt += " Do not provide any questions by yourself. Let the users know that they can"
intro_prompt += " simply click on the questions to execute them."
# intro_prompt += " Let them know that they can check out the use cases"
# intro_prompt += " and FAQs described in the link below. Be friendly and helpful."
# intro_prompt += "\n"
# intro_prompt += "Here is the link to the use cases: [Use Cases](https://virtualpatientengine.github.io/AIAgents4Pharma/talk2biomodels/cases/Case_1/)"
# intro_prompt += "\n"
# intro_prompt += "Here is the link to the FAQs: [FAQs](https://virtualpatientengine.github.io/AIAgents4Pharma/talk2biomodels/faq/)"
response = app.stream(
{"messages": [HumanMessage(content=intro_prompt)]},
config=config,
stream_mode="messages"
)
st.write_stream(streamlit_utils.stream_response(response))
current_state = app.get_state(config)
# Add response to chat history
assistant_msg = ChatMessage(
current_state.values["messages"][-1].content,
role="assistant")
st.session_state.messages.append({
"type": "message",
"content": assistant_msg
})
st.empty()
if len(st.session_state.messages) <= 1:
for count, question in enumerate(streamlit_utils.sample_questions_t2aa4p()):
if st.button(f'Q{count+1}. {question}',
key=f'sample_question_{count+1}'):
# Trigger the question
prompt = question
# Add button click to chat history
st.session_state.messages.append({
"type": "button",
"question": question,
"content": f'Q{count+1}. {question}',
"key": f'sample_question_{count+1}'
})
# When the user asks a question
if prompt:
# Create a key 'uploaded_file' to read the uploaded file
if uploaded_sbml_file:
st.session_state.sbml_file_path = uploaded_sbml_file.read().decode("utf-8")
# Display user prompt
prompt_msg = ChatMessage(prompt, role="user")
st.session_state.messages.append(
{
"type": "message",
"content": prompt_msg
}
)
with st.chat_message("user", avatar="👩đŸģ‍đŸ’ģ"):
st.markdown(prompt)
st.empty()
# Auxiliary visualization-related variables
graphs_visuals = []
with st.chat_message("assistant", avatar="🤖"):
# with st.spinner("Fetching response ..."):
with st.spinner():
# Get chat history
history = [(m["content"].role, m["content"].content)
for m in st.session_state.messages
if m["type"] == "message"]
# Convert chat history to ChatMessage objects
chat_history = [
SystemMessage(content=m[1]) if m[0] == "system" else
HumanMessage(content=m[1]) if m[0] == "human" else
AIMessage(content=m[1])
for m in history
]
streamlit_utils.get_response('T2AA4P',
graphs_visuals,
app,
st,
prompt)
# Visualize the graph
if len(graphs_visuals) > 0:
for count, graph in enumerate(graphs_visuals):
streamlit_utils.render_graph(
graph_dict=graph["content"], key=graph["key"], save_graph=True
)
if st.session_state.get("run_id"):
feedback = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional] Please provide an explanation",
on_submit=streamlit_utils.submit_feedback,
key=f"feedback_{st.session_state.run_id}"
)