1283 lines (1282 with data), 139.3 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import libraries\n",
"import scanpy as sc\n",
"import pandas as pd\n",
"import numpy as np\n",
"import plotly.express as px\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def discover_new_annotations(data, clustering_resolution=0.8, n_pcs=50):\n",
" \"\"\"\n",
" Discovers new cell annotations using clustering algorithms and UMAP visualization.\n",
"\n",
" Parameters:\n",
" - data: AnnData object containing single-cell gene expression data.\n",
" - clustering_resolution: Resolution for Leiden clustering (higher values create more clusters).\n",
" - n_pcs: Number of principal components for dimensionality reduction.\n",
"\n",
" Returns:\n",
" - data: Annotated AnnData object with new clusters in `data.obs[\"discovered_clusters\"]`.\n",
" \"\"\"\n",
" # Preprocess data\n",
" sc.pp.pca(data, n_comps=n_pcs)\n",
" sc.pp.neighbors(data, use_rep=\"X_pca\")\n",
"\n",
" # Perform clustering\n",
" sc.tl.leiden(data, resolution=clustering_resolution) # Leiden clustering algorithm\n",
" data.obs[\"discovered_clusters\"] = data.obs[\"leiden\"] # Save clusters to new column\n",
"\n",
" # Compute UMAP\n",
" sc.tl.umap(data)\n",
"\n",
" print(\"Clusters discovered and annotated.\")\n",
" return data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Visualize clusters using UMAP\n",
"def visualize_clusters_on_umap(data, cluster_column=\"discovered_clusters\"):\n",
" \"\"\"\n",
" Visualizes discovered clusters on a UMAP plot.\n",
"\n",
" Parameters:\n",
" - data: AnnData object containing UMAP coordinates and clusters.\n",
" - cluster_column: Column name containing cluster information.\n",
"\n",
" Returns:\n",
" - fig: Plotly UMAP visualization.\n",
" \"\"\"\n",
" umap_df = pd.DataFrame(data.obsm[\"X_umap\"], columns=[\"UMAP1\", \"UMAP2\"])\n",
" umap_df[cluster_column] = data.obs[cluster_column].values\n",
"\n",
" fig = px.scatter(\n",
" umap_df,\n",
" x=\"UMAP1\",\n",
" y=\"UMAP2\",\n",
" color=cluster_column,\n",
" title=\"UMAP with Discovered Clusters\",\n",
" labels={cluster_column: \"Cluster\"},\n",
" )\n",
" fig.update_traces(marker=dict(size=5, opacity=0.8))\n",
" return fig\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Visualize gene expression in clusters using a bubble plot\n",
"def plot_bubble_matrix(adata, cluster_column=\"discovered_clusters\", top_n_genes=10):\n",
" # Get the cluster labels\n",
" clusters = adata.obs[cluster_column].unique()\n",
"\n",
" # Extract the marker genes (use the most variable genes or any list you prefer)\n",
" marker_genes = adata.var_names[:top_n_genes]\n",
"\n",
" # Collect the gene expression for each cluster\n",
" cluster_expression = []\n",
" for cluster in clusters:\n",
" # Get the subset of cells belonging to the current cluster\n",
" cluster_cells = adata[adata.obs[cluster_column] == cluster]\n",
"\n",
" # Get the average expression for each marker gene\n",
" mean_expression = cluster_cells[:, marker_genes].X.mean(axis=0) # Make sure it's 2D\n",
" cluster_expression.append(mean_expression.A1 if hasattr(mean_expression, \"A1\") else mean_expression)\n",
"\n",
" # Convert cluster_expression to a 2D numpy array\n",
" cluster_expression = np.array(cluster_expression)\n",
"\n",
" # Create a DataFrame for the cluster expression matrix\n",
" bubble_df = pd.DataFrame(\n",
" cluster_expression,\n",
" columns=marker_genes,\n",
" index=adata.obs[cluster_column].unique(),\n",
" )\n",
"\n",
" bubble_df.index.name = \"Cluster\"\n",
" bubble_df = bubble_df.reset_index().melt(id_vars=\"Cluster\", var_name=\"Gene\", value_name=\"Expression\")\n",
"\n",
" # Plotting the bubble plot\n",
" plt.figure(figsize=(12, 8))\n",
" scatter = sns.scatterplot(\n",
" data=bubble_df,\n",
" x=\"Gene\",\n",
" y=\"Cluster\",\n",
" size=\"Expression\",\n",
" hue=\"Expression\",\n",
" palette=\"viridis\",\n",
" sizes=(50, 500),\n",
" marker=\"o\",\n",
" )\n",
"\n",
" # Adjust the legend position to the right side\n",
" plt.legend(title=\"Expression\", bbox_to_anchor=(1.05, 0.5), loc=\"center left\")\n",
"\n",
" # Title and label adjustments\n",
" plt.title(\"Gene Expression in Clusters\")\n",
" plt.xticks(rotation=90)\n",
" plt.tight_layout() # Ensure the plot fits within the figure space\n",
"\n",
" # Show the plot\n",
" plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/jaydeepbhat/Documents/Hackathon/2024_AI_Agent/scripts/talk2cells/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/var/folders/vn/z_dtm8w13b92pwg7wrgkkfx00000gn/T/ipykernel_56284/3840506039.py:26: FutureWarning: In the future, the default backend for leiden will be igraph instead of leidenalg.\n",
"\n",
" To achieve the future defaults please pass: flavor=\"igraph\" and n_iterations=2. directed must also be False to work with igraph's implementation.\n",
" sc.tl.leiden(data, resolution=clustering_resolution) # Leiden clustering algorithm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clusters discovered and annotated.\n"
]
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "Cluster=3<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "3",
"marker": {
"color": "#636efa",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "3",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "R2rRQE3yr0DggbZAUpOjQJtqtED7X7NAfrzYQHixtECRwq1AHDHLQG+0QECoI5hA45ekQGmtbED7KqdACDyJQEb1x0DqMXtAZmSZQKa3ckBod0RAR1qyQJfwtkAJ449AH5e9QPFTmkDXB4lAqp11QFrZqUCeN6xAi5nCQPaOn0A3NbtAT4+qQClTzEBs1IhA1VnWQJGwp0BZhqZARUKFQIFf2kD+bERAGmWiQCJzBEBnhJRAol5bQOEjiEAWE7VA6hyMQP+7eEBoR7ZAThCKQDbapUAhbZdARUuFQAnpz0AZ4IVArf6eQCx4okCC76xAyWHdQJ1TjUB984JADaSpQCG1m0D450FAjE2oQFtar0DgB4hAaeuYQE5Ov0Azc3BAPM2fQMMEo0ClV69Az6N1QLy8j0AMkKNAnFe8QJJei0CzwZ9AAPp9QIjWnEDv45dA7DDEQJjFs0Aop5RAWiKfQNm1t0AvMWVAmhVbQCdfykAfyW9AlocXQEqRyUAW10hAbY3BQNnrHkAevLJA/VZNQEKsd0AXnLhAUBfSQP87bkBOjHBAkzF5QJ2xTUDdZnNAVrl5QB2OSEC4UWlApVuNQCIFr0CS8L9A/eGtQCVXTEAcGrBAiBRCQJiefkBKyHNAiGaHQD8J60CAI5pAGVeIQNfBpED0dXBAy/JVQElkSEAvQtlArgrSQDzo0EB718NAGu2gQKaSX0CRF71Amhi1QDtRrUAMWqpAPUuAQALFvUB5MYRAJJ5bQAuAnUDhmqhAgkXYQF2HyUBBAFpA9kG1QPb6fUDAPo1AHJ2+QEAYskDFPbJAQo3CQDgGdkBAO0RAEp9SQKV5uUAgqc1Aeu1HQL0dYUCbyIVAj8HCQAEoxUC7eFdA7gGiQFq0zEBZqFBADUa8QGtw5UCXB2VAkwgmQLT/WEAchHBAm37RQFBNuECfWMlA8PsvQAiR1UBPlldAV+HFQIhawEB72cBAi7u4QAqwwkB+VV5AAt+HQI7rs0AGIYpAoAGkQEXQwkA6sUxAIIu0QAd8l0Ais7NABtStQLlX40BBDK5AQKN9QEQDlkB/edZAy6ikQE+drECJKsVAAJjfQJcfN0C93YVA3jt8QOnxVEBVX2hARcSIQHt1wUA/ac1A2t/CQJYEykB8P9JACQC8QJekqUBPpqxAcdmdQNyzxUDEqoZAES6JQAS+vUALY8hAK8zMQIt/nEBpQ5BA6KpZQCMXYEB6+MdAOJWnQKdBgECmxZtApnqDQOIinkBSDbRAsxPDQF4ZrED6kphA0AaHQJp0tUAY21JA6gG5QHLUS0BoS81AnCfAQKfSWED+MZ9AR61bQNJkg0DKlqlABHdQQNDTh0BX8I9AsgmsQJcGnECaXDpAyj6eQKwhtkASFslAp2ykQKzDjUD4UYNA4H/KQFXg0EC/Qq9A4+VMQO5ffkABd5BA82bHQH1k2EC/j9RA5uGuQFj/pEAlYb5ApRaxQPDtHkBINJBAZyW7QKYmQkAnTMNAnxvOQBw+qECN9ZJA67O2QMLkh0CzpZVAtzd4QNK3q0BXgLdAFBJ+QNfRuECN4RBAzFi4QPFZakABM4JAyyjHQC0pnkBWIKJA+02nQLweqkCw0J9AyJhMQKcjzUBGD6pAPi84QJi2c0ChWodAj+bwQB+po0C2cctAjg+bQD1wWUAjUqJA4h9tQIX3vEAXHzZAw1yvQN1CrEAL6plAD+aeQIBbrECmZ7tAtgtoQF0c1UBXM51A4UedQDHMsUDpIMhAJYehQMKn10CCe51ADYSEQPXEm0ASkFpArkN8QNtkpEDdhbBAbjKRQKfq4UCW5rlAiCnPQJGSZEChqGZA888uQLru2UCZRo5AQqydQArUvUA=",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "ymOFwNlplcDVJIvA4ceowN9gsMDVzojA1DWjwAnNV8BkmVHAY3JmwOhXo8B2XbTAjSCLwCuJncD0h2jAH72owEXTZMB1Uo7AfjqHwLk7dcDyVprAOIxiwJ8coMC5NqDA0kKTwIJlYMBa7p3Aj2elwEe5msBD0DDAg3UcwG/RecC7QXrAw8FkwLIPqsAbj37AiQFewLkPXcC0NpHA7kGfwELkg8BNS5PAF/t+wFnIhcDmHa3AoYmOwF3XhsCMm4vA47eqwNiMisAAh3bApAF/wMsUSsA/2knAbvNLwCopjMA4VpHASmU/wAGFgcAqgGzACUi8wA/+nMCwIYbAD/BuwA3ZZMAG3YvAqjNrwP89i8DP/5DAVVuHwEZMkcBo5aLAagNOwPMNYMB6xKnAPZOAwE9smsAfpi7AZOKBwBdFrMCkE2zAKzuPwOasnMDOOkvAYpWxwJCxOsByXYLA1v+hwCpmL8DAdofAFF+XwGGEk8B2GWvA4Y2IwOFNoMDdFprAyVN0wMhFjsCBVIfASSabwDVZmcDKvUjA3gp3wB6sqMDKx6TAt3iawLnzkcAmhIXA6rGTwNqJlcDv653AB62OwCOhmMA4xKDACm07wGJCpsAxbXXAjD6fwKvrG8CjpJ/ALW5WwMZmqMD6JWrAWjyVwGZmcMCPBofA5IqawIL1nMD1+I7AJa6/wKuNusDlSVXASYJdwJacqMDAF4nAJviZwCgaZsDhrUzAEWRvwNlkpcDTDJ/AkqeFwCEju8C+bFTAjkGVwO57W8AVY6HAnQVIwBLwicDzbVXA2HJQwBBhesCR33zAerKAwBhgjcBaGZzAXo6awCFSV8CQKFDAG9OWwL6DjsCCFavAIts4wJN0scBFaHrAL4k9wJsRZ8C4HaLAFHiVwDQ50cDAI5XAfauDwP9ykMA1T53A8XGowONVhMDrtbvALiyPwJp9gMA6mIzA9i4mwKXzhcC58lvA10VswLiVtMDdg6HA63WFwHp3lcDSPX7Axh6FwJoascBSy4jAvE16wLkJpsDMOV7AWr6XwPEyzMDjKBzAHs6qwHdtkMAf1ZjAuKQ9wLDFMsBxLaDAGTe1wOB1jsD8t5PALmWKwHernMDtX5XAGNmTwNpjDsAyRIDAXXpiwOyaqcB2eFTApRCBwKSCMMBDvoPAMKdtwEjiFsBB/qfA+QiGwEzZe8D9VJHAyDp2wFwzkMC9iZbA0lR7wAfSmsCFbEvA1bh1wALtgsD9HTLApm+UwNzhhcD5lLnA/BqcwIXEEcDw+UDAFYt+wE9Db8B1OI/A//xHwJgsmcBJMpPAM5ddwIu0kMAUFznAIaiIwNr/qcCgZVjAWayiwLzQi8BI/ITAqtOJwGI7J8CprpLAjyaSwBlLpcBsOZPAVkCCwJ7AJsClL2XALJOPwHrIj8AefpXAhFmTwBwUjcCU6ZHAnIdGwJzap8Bu2mrAwnd3wL3hfMCccI7A80xcwNg2gsCY74HA9mWYwOVak8DMIbbA44qXwNc0McA27nTA2dCYwF/ujsCaFknAI22hwB80UMBHX4HAiCaTwGU+esA3GYXAIrS4wNShjsDdon3Ageo6wGdVg8CUzZDA+qhdwDygX8C4ZWvAmReIwMc1ecDJQ13AKd2CwLdqpsDjG6vAV4ygwH3LSsDezFLAhexuwD69j8CChKvAGnWdwIEdacBT7oDA6Q1rwHCdkMAdxnDAGVw5wP7WjcAi9z3ARDmIwAOOucBZBE3AMTwwwLEKjcACocLA7XZDwPwVr8ASeUrAwLKrwNJHQMAyIJzA5yavwD23dsB15o3APxhowBPQp8CHN2DA+n+5wE7AkcB0gZfA9q+QwNrCmMDLwp7A7omDwDzNe8A=",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=4<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "4",
"marker": {
"color": "#EF553B",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "4",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "QIQpQJWyH0AfQlBAqZ6PPDZs+z/t5fE/xDw0PVSMvD/gcg2/9RQvPyoNKkDxs/g+Xz8KP15Esb4+9TC/t50NQCmvREAcUHk+ONfDPqjHUb4fhoI+mhydvgaADUCBbCNAz2YGQFD5oT+UVuw/YCH+PRJBFj8w2u4+H/EBvHdlkj/SQvc/HAqqP6eI6r1yz46+tCixPrjVCkCuaiu/jH9EQMLkjD/2z1o+uHNeQHG3Cz6zjOM/siEavQNfYD82DpA+wDiGPw83Pz3Jnva+hzqAP1cdyT9baT1AiNfQvR5S0j/H2ZQ+h1yxvSNYMr09jr6+gdVGPDBRKUAfTUc/79AbQLYsjz/oR7m+5LOSP79mZj4029s/N0u1PTae0D/7hNk9y47IP17cC748/F6+ZjbyP3wXFD9QpYE+Rfq2vub4fz6GcZ0/OgOIPu6a7z+/IHm+ny/AP4EZuD/rQSC+VcS+P2xD7b515p0/pTE0P7sWnT9V8j2/LX6QvupmnD4NJIY/Aia5vpgBBkBqHuw+miANQIOXgz4YchE+Ntz1vr2/9D/IyAtACI3nvmnQ4j+GD0Y/YGyzP16Tmj49WMo/HhZQQAiIKT5lbmo/zvK8PnPoOD861Dw/hN0FQPgk0b5tq/s/fAILPwrypT/nOak/pmQmvm/jR0AFCPc+qsffPwcN+z8wF7I/1675Pi54/z3SI3s/x+UUv8QSCb8qDZg/ieKZP3QbAkBRJBQ/8C+1PR1N+j5m8DA+PN1BP72SGj8g+PA/r8kCQBKcgb4+Yp8/g4hYPmi0Pz/O1lg+H6UBQJocsz9vtTk/o2WsvUOhU77dAfA/1h72P0ftPj6w0fo/qfRcPz2Ml77xwqw/r3ZLv1j1Xj4gIfm9zRRqPy3l5D8xHRxAWuH7P8Az2T6knhBAI9oBv3I4N77l7BdAdTXMPwGqX0DhRhxAjawkP5rN9b4Q2U6+UxXIP/o+Lr7hKo8/UVCDvpfAST9NA8U+MaqOPrZudz8RBxJAt6lGPokGAEAzRFo/maRVPu6cxz8tmXc/3mHzvklFBEDD+Yg/uXXNPs4YGD5Tzbi+cpAPP1Dw+77rfOI+K508P5Xsmj8kGkY+nWGmPz1yDr5ZgVBANeEBP1Lc07uQJipAk70JviDE1r6aTFm+j0SHPlMXg75BD2c/6OUEPk8lAb5x3WY/Ujr+vf5QGD8DScQ/M5nsvpxgH0BEoCI/iGkpP72Xhj/DrvC9679jPjjQIz+WK/4/AeilP9iT4Txp2lk/XnNCvnGACT8MEY0/M6GmPxBIeD9gP3e+5juQP5NmQD7jyK4/mJM7QKGSPj8BGxK/qLIcP3Dr3D/yat8/MC7pPbW/xj9u4x8/7VdXQA6vMj/JRfE/JQMXv0wzYj7bQJc+J+aYP+Vv5b0g+E0/XHKuvryCkL5QgvY+J/CDP1J/KD0ZNRC+MZWKPTZbvD399aa9OrkRP4O5KT8Y0Qq+ZIRIP3ajvj9MGcE9QYcPQLmBCUCpFqE/glwJv7uvxz9xdgS/s9oSPz2DWj++A8Q/OLT+Pnad3D6nQ7I/0YGrP2RVlz/8Olw/a5Adv8nvO754KZY8UHztPypFez3srao/R8AyPlLo0z6jdFc+qL2LPRV2oj+8WVY/QQa/P1RYvz4vvgZAlU8iP9TXmD97+Gs/Yc3YPyQKu75D5e0/tIA5P3bngbxTWoW+aVY/Pn+ViD/ipB6/AYQBP+WMxD8z1CRAuRicPnUO4D7LctY/N3pdP1kByr6+VOU/qr3JP7LZMT+f2s8/qkF3PXs7wD8RqSs/jVdXPzLhHD/lnp8/nzIDQNvwaz+yswK/O2X1Pl3eF78=",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "V+3MP6hHsz8cnj4/z0orQIqFhj9JSwRAfVIWQE5EBUC/QgBA6FGmP1QJpD8cgJM/isHiP8Rzjz+bS8s/0/bgP7kRaD81B40/03OWP1QsAEBb94w/hohfP1a/1z9cN5w/C5C5P1Ijmz9SmpU/CcWdPzavID96oso/Nw6hPzMwcT/Fw4U/zGwGQM3zxT+SAWo/qasMQPaL9z/7dLk/qr+dP/mY8T+zWOA/Dd74Ph0llj/UiuQ/ysqbP27rCT82h9A+v3IlPwE6Lz+xatI/1E3/P5mTuj+6l10/zrubP6t+MD+Avus/1eqpP2vbPD834CZA52gSQF//wD90cqQ/EAfpPxas5T9Ekoo/85sEQAkO9j+JIBJAN9SkP8ICrD+JlvQ/JgF2P3+I/j/yA5I/d/eCP3exqj+ZCBNAxvChPy79EUCtYqg/AZgmP4TWgj8PvyVAnmG7Px79tD+GYHE/ub9nPwn3FEDdYtg/njGvP5YspD+z6Mw/6MwpQAVxuj+Lopo/L5+GP4oEwj/L/ro/AuXhP4lLHj9d02M/QIfnP+we1z9kgZs/MuMGQEnayD9G2vc//Q2+PxxjFEC2xJI/miNxPoz30T8s1o8/z22DPzXMvD+oKbY/uX+cP6CRmj982t4/FO1LP3WwFUB3Z3Y/q2cbQG4FmD91shNAMG5WP+AzoT9w1FI/6/N2P2dF1D8M2jY/ItS1P3vGoj+Jqd0/EEsBQEbs1D91WwpADNgQQH8DxD94BJU/jV/fP1lqbz/yuOs/RHSmPxYrpD+1fIo/tUAZQHrcnT92bz8/H7rGPyHxgz+SzQlAPo4zP2V3KT9QEZc/N/UEQLjvrz/lYJw/mCaqP5tpxD/7YQZAA2oEQBmJzj8ayMA/t/SXP2lhrj/qZtk/B2XqPzzxoz+rTq4/6XzKPwxkDUAMDc4//bsJQJscIj/aq2U/4H3xP/ER6T/O2HQ/EVJbP1pjYT8aJwM/75EpQLYdVD8EvpQ/BU6lP/3VnD8ZB5o/FvJzP9Bxlj/OrSA/Hyz1P2ET9T+Gdf0/YKQZQMiUBECs3ghA2Nd8P9TMKkDUZqk/Dk6vPwN38T8qCwNA2nrhP5FoBkBhYe4//E9VPwga9T/q0R0/nIhTP+qi5D/teZY/O3pAP4mGDUCVy5Y/g6YaQEXW/D/NM9U/sA/sP/3WJ0BJFK0/OsvIP6PG6T8h/mc/lhrLP5kIsT/FWtc/oybmP23JDT89zSU/ivdgP3nxB0DL+bw/BiS/P3/+gz8fKOE/whgDQDWwRD/pkbM/3hXSP3iy4j+K/wJAZKGJP8UX7D/X1e8/e4GQP8t86D/4L6Y/2WKoP4/wkz8r/tc/ylTVP50gwj+cH9Y/m01mPi02jj9bqqg/Zxr4P+YC2D/Phbw/242zP9Vtvz+DAv8/vDR6P+AlDkCG+Fg/5oemPy9BG0AZVdM/7zEBQF+Wnz/KxWw/ZNQfQMChvj+dzbM/jjfSP1iNoj+dOow/LFPVP/TStz/zoqA/7nLTP5iW5D+/1O4/8zUXQLnvmz8mejo/B6aQP1zcLkBuLw5AUq9cPyCpBEDmJUc/RighQHToEEA0n/w/wUYTQGjrA0ApWQRA8bE9P2nr/D98N6w/7eb8P/026j+Nfa8/LrfLP2LKbj/MGa4/dGQbP2MyyD9Td0s/xu0MQLhV0D8IHLI/TQYhP+S9CUC2UhFAvWeoP3FaDEAf1as/LpgPQPq9ij+6/Mg/GLtMP4s3LT/miAZACwrHP0hBxT8RCtc/EeCwPzgpHEDmaAhA5DirPzSbmD9uMxRAAVm7PwmZ+D8dhJ0/QyZwP4PcKD9Fbmk/I4UEP5JS2D8=",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=0<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "0",
"marker": {
"color": "#00cc96",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "0",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "puYGQQBt7EAJ8AdBKKPyQI1ZGkE1cANB/gDUQAW/CkGZ2hlBov70QPPTB0EpCvhApar7QLSr9kCxvAVBfN0CQU4D/kDxshtBOz74QNPsBEF4gBpBeODqQMr5FUH/wQNB5vj+QGVaBEEwcAhB3V0IQZTG/EBfGhZBIqQMQd1KF0Fa0x5BZ0fmQMr6/EAfhw5BMuYCQRB/AEEZbP1ApeMJQRl0BEFcwelAMLH7QNVN+kDkivxAj7XjQMgjDUHkqBBBcWD0QG2l00CruwhBwqjlQLtH+0DT2fdA8jYPQX4a+0CPQxVBDCX6QB/fGUHjPulAaI0YQaAB+UA7PAVB1vPfQIraDUFBpfFAc1YAQVbjDUHM0xRBx9MbQaFUGUGi7etAC0AVQcveBkFA3uJADnPLQOWMEUHEugBBHYoNQT4BBEFHzwlBlP0BQdtg6EDmnPlAayoSQTBh/UCIFA1BhZIZQa7gAkGeb+RAvG0GQXGM4EBtRhRBYBPjQEqqBUHQEPBAodbuQFsd+kB7M9lAvI4CQRV190D6ZQFBH1cUQYyNC0FEL/RAZxPRQDIf9UDIlwFBl1cdQQHOHkHDgABBHsICQU3nCkEoZf5AtEjgQEcj/kDazxFBeP3rQM8EBUGrHw9B7zjzQF035kA9ZudAcQbxQF3MDkH3/gVBm18MQcqFEUHqYQVBUGMEQYxL/ECrF91ADgcEQVe4/EA+tA1BNu0YQfV/6kDPJQpB+DHcQACA+ECvGQ1BP6wCQRI86UC6fRJBTIMQQXY2AUFtzApBZpsDQWbzEUFgCRVBSdEGQZ5LEUHwAuNAqsLuQCLF5UDBQxdB6SzpQDvb10BoExpBYRDsQFUsDEGgredAKZjqQDyk3kCK++pA9XIJQXao+EAwze9AxP34QEegDEH66+lAxdrfQKeZ8UDH3glBt3kTQWc99kDSSQdBEnX8QLkn0kBd7OpAPDTPQBbND0FOoO1AmQjrQAyp+kD8mg9B1yH9QPkACEEAdv1A3nXoQN3wEEH77ghBR2kbQbP5CUEkkPRACTD7QI0oEEGJG+RAAh3tQADJG0FjkA1BBWIDQVo+CEHmeQdBTGkUQfJh9EBsYQxBDBcFQXf57kAKUQRByT4KQSVz5UD8tORAHRj7QKdwFkF26vJAUNfxQGDDAEFHVg9BKs8FQYn/GkF1kgtBoZn3QHYKE0GpfQVBFh0WQSHc3kC1pPJAS4DdQK/C50DfDQhByXgIQb7+DEFJIwxBa4IVQTcm+EBuGvNAvTj3QNqz4EAXeQ5BotPlQHtPA0FOKftA08vhQP/CBEE1RQBBRU7xQE+RCUH/6QVBPwQDQRBFDUEb2AZBkLQHQQfQCkF1PfFA7+nzQPg190DgWRdBglUNQfC080DuzQJBiZUBQVz8CUF3Ow9BPpH/QOe9E0HkAeNAYMQjQcBv4kANsONAdIf4QKUM60BMUf1A6DURQR+0BUGiXA1BrKUQQRmK9EAbsgpBA5j5QEzz/0A+/upAWrEAQYOlGEER8RRBJ14RQaWaC0HVdBBB4NL+QMpy/0ArexFBx00LQb3ID0EklfBAkEv+QMLO6kCNPARBgi3nQHkIEUEOWAdB7VMSQd6F7UBSthFBNSwMQYtH50C75gpBYtIFQei0DUHC3xJBiAXlQAzH80D26QtB//kaQac/C0HgZ/VAwwwHQfpfEEGK4u9ABu7rQFe2EkEovAJBo2QGQd1M7kDCMBVBm7z8QE7YFUGgmgxBaUoEQY0r90CYQv9ALzAkQdF1B0Hh7fRAc64FQd58C0HQbApBiNb6QCtsCkHrmAdBtUILQVEfF0HPPAZBAesLQcCWDUHM+gVBn88fQdyU/EBfbftAwwL/QNGkDUGxo+9ABlAKQUFG7ECWa+tA1Z4bQSuxEEFLf+hAsIMeQVn9BUEIXgRBpCP3QBD4HkEkqdVAcEQJQYbA70CvfRZBve7YQP1iIEHNuONA9MkPQchgC0GDegdBm88PQcEg6kCSjwNB37T5QOYRCEFYceJA4TfQQHTiE0Huc+5AGoj3QDxYAkGkg+RAYQUKQZ/8FUFKPAFBZXUWQfPOCUE7fORARxbtQBQ2E0FTIhFBbMwJQRgvDEEKOgZBlPf5QJ6VD0Hp+w1B8QcMQTPi/EDb9wdBh3YDQU5o5kDwaulAgIbvQNui60C/9gxBHtf7QL8S8UA3iQNBw18IQTaaFkE2nAZBxAYFQeQi9kCO/QxBjO8BQQODDkFK4RpBB9gFQXCO9EDqOAtBxyLmQCg6A0Gn1NlARD4PQQF/AEHj5QxBEpwCQeHe4kC1QQ1BHNroQJyf+UDjfQRBBprkQAuBAEF11hJBJywBQRfdAUHKW+1AErYBQYpS3kCLIvxAH1n0QM3h7ECyPvZAMp3fQCdwBkF45QtBc/YNQYru+kBCz+9APikHQbqT6EC0lBNBd+cBQfoV+EBfqulAmWQLQR14B0GjWSRBdfr7QDVkDEE1GehAhJ4MQe3TAUFNOgZByacXQbIP/kB/QxRBM1wYQbmD4UCXQABBQujbQM8VEEGhWw9BMdHwQG2A50Dp//RAKfwLQfT+70CJihNBd7HmQD315kB3BOdA5HERQRBQ+UBljeNA+hUCQWAuBUGpHwpBW5UEQcLq7kAlcvhA8yT4QEmg7kBxvANB0wEGQRYZFEFaIflAoaTsQMZO5EDA0wFBFd3tQF9IDEGUuvFA9db/QKHKBEHArgdBeh7XQAEYBEE0/OhAhVfSQEf2AUGOCA9BE+kHQZRREEHaDhlBbZn8QG4eAEFUJRVBKZoZQUjK60CuWQhBxMILQQPrCEFgpvlAa+IPQfEkDEHwvgJBmNkRQQGGAUHjyA5BS6H9QNbQ70B1WwhBEev2QCNW6UB5Q+BAKbEaQRcU5EA/ShBBe6LgQJyzD0GJj+9AW28QQbJeDUHvbB1BTxbeQBDmBUGRcgtBHxIaQenhGkEQUf5ACDvvQL9n/kDQyPxAAPUGQS05EkGU5RVBj/T/QAMRD0FwWAdB2XIPQZ6s6kDF5v5AT1L5QHk64EBnQQBB",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "g4eHvzG3SMAm+CjAIZUzwNCZJsAiZjbA4IErwNrx27+D5XbAZXMWwMfrVMCOWHrALbgowFjLMMBDvTrA4GHtv8zgZMD7FmjAtSQ1wG8RgMA1kW3Ac2wfwFCvgMDH0WjAdBAowOzlNMC+RiDA6jwFwNN1ccAnxTDAnKaSwAnwa8CJE1bAhoFWwNk6TMB3iqW/U1U2wFa/ZcAYOUPAMyRYwGppBcCbwxHAREswwMHJTcA0a0fAa6hewPaMjsAjZV3A2pn4v8h/UsCkodK/T8Z+wLcyN8Chr23A1nB+wA87AsDUJjbAe89IwOS/YMAp0UPAj9hFwPLl5r8eydu/HK0xwCzplsBzJjHA6sfsv0eldsArV13ALC8ywDuTRsCIKJXAoc95wHaYgsBODJ/ARRNEwMxMHcBjoJjAShEvwPvdWMDvazrAgJ6NwE7N7b8Z0m/ALv5YwBidncDvO92/r618wMS8i8AGtf2/2PZyv9oEUsBCMRfAvq2OwDplEcDXwR/AvVKHwPA+k8DGWmHAhylwwPHdUMAOMAHAaOkwwMshYsAoIC7A8/UnwGlu2b/fOhLAOdRHwKurI8CeZnTAVed/wH3Csb+wG1bADaGUwGhbD8ALLRbAtP6LwOnxO8C31YTAInlJwOu+mMAMG3LALjJRwHcTOcBKxwzAFUJewB1Ii8BSLkfAor5lwM03acAQxBnAkauGwB6I9r8H9S7AbIZFwEYFCMA3QUjApMNpwCa4CcDd/rK/GSMewK8ghsA5T4XAqZpEwEEjXMA27+C/K7kPwLtXicBVcxjAbPbsv0Bl7r9fER3AmcU8wClE/b8gQEjAETpFwF1mEMADTwvAojeDwFhChsBE/13AnLg5wBAkhcBTPnjAjcTuvyygicDe8SnANCW4v7tgg8CKKI7ABBdJwPq0gcBicVrAFCdcwDVEeMBx41DAfH5mwO6iJMDELiXAS5QbwLVnJ8Dd8AfALF0Vv/jJjcB2Ny7ArkthwLezecCW7CbAUWRIwFqRS8Dru5nA3jSOwPUigcCvOxjAXFJgwH6vQMBfe07AMJwDwAaWXsCE//q/+MiHwEN49b8OLL2//apswGy2lsDpygTAFxGPwOa+X8Dk11PA2sxvwGmROsBDU4DANVApwJ/OeMCty3zAT8hhwJzBOMBD13HAlgpQwAriWsB5L0vAmOCbwHl7PcA7zn/A828fwJjqjMBRvt+/4wVRwKZffcBzuBfAyTKNwAsgB8ACQo7AhMl1wBhuhMBUMXfA+84mwFRQKMCT/YXAWFCdwA4bDsBPjBnAeaF+wJRPB8Am+VbAhfFBwAD9zb9aN27Ac5cZwK7mIsAHS4LAhRaXwOrOC8DhTIrAysRZwD2tAMAyk13AHJWDwPg+a8AFZ4bARnpLwEjHy78vQJXA/rqHwHi7ZsDgmkXA96g2wN4rLcA3d0zAFdBewFTMOMCCk9y/q2hewJExPsC3bJvA99Y3wBaYEMAQd3XApLMDwND2OcBgpW7AtlmJwHYZW8CtpS/ABgAzwKySWMBfgjrAvtIEwMWAjsCV6Z3AT7MawCzbTsC4ZpHAJ5R+wFpDZsAqVmPA0eY/wJxJdsDaYvi/6nVowDxNd8BkShvAbUVEwMSyb8ABQjvAiskWwDd8SsBNtpPA1ACdwIZgbsCKRonAjQ9UwGqN6L8rETnAg7TNv5ezacAZiaLAy0n5v5sJX8BxXYzADOFfwBDWKsDmQW/AFpk8wPZxT8DWpFPASdf8v+i1T8Aqqr+/KOwzwLeeWsCfEaW/tu9GwO9flr/AGi7AB1YgwPSmgcBxvYfAgIQkwDRbesC6M6i/PNocwHqeM8DY6cG/ljlbwFGHFsDZCybAagT4v5IAAcCchP6/29ICwM2jzr+YFSnA2+B1wHXgsL+0+x/Ay31twK2+S8AKvXXAkUIJwAfiacDTuBrAAW8mwIzjdsBoh0vA1zAowITtaMDoo5bAm3P3v5JxoL81Hi3AToyQwG9bRsDfRlnA/7xJwG1RF8B8FjPAAygxwIdN/b+0fI/ABafav4DhJcCP13fAaq6HwAXsfcAh+xfASk8XwEfqcMAnlJbA48liwPocfsAhwMa/SXa8vxtoYMDN8TjAoCOJwM9jZsBq19O/RuVpwBYWY8Cww4a/lDBIwGrIM8B+e9G/h8/3v+B9gMDVDznACzacwLZqVsD8bSPAf2FxwPkFYcB5Icm/vthnvxO5WsB2dC7AMHMHwDl+G8BT8lXATLAuwDt7g8DwKkvAwcwXwO8YJMB061/AdnkKwE1Nk8B/p2bA2dMfwNsBQ8CRJmvAMSSNwKybF8AK04LAdWtMwMcZS7++7ea/dT2OwH7khr8MVPu/y2o9wCRiKcDIz43APziOwDhlJsBzlE/AJO5bwOz7OsAa0PS/+OlfwFpeJcAJTL6/2V2BwPFHOMB/Hh/AhpAxwE7SgsC46mLAsv30v7TRF8Da9UvAOV2sv8+aF8Dt7hjAWrAqwC7Sj8CAti7AyvghwFps9r+I90nAyA8swNTITcDFO4HA7IVVwLY/WMDLsvm/bsdHwH7eH8CqWZ3AJV1YwDLTWsCwKhfAxP5NwEMsjsD1GwnABfSJwMOjVsBM3f2/tR7VvwzhOMBe5TTA9UxrwBpDCsBL0AvA1SUXwKrgNMB3kzW/0BEcwGYIBMAS5/G/3W5pwFhnUcBwgJfAjGUgwBsReMDuITPA9eY8v4ROg7/y0QvAlFoMwCKgyr9K6ua/4abqvyjzZ8BNSFrAjs6AwN5ZicALMyXAO7b4vxjzdsBHQAjA5MR1wK+7ZsBrAELAx8V7wBQFicA6NojACPQNwMmWpr89m0nAaucEwMvpcsAE48u/0D1twK59e8Dl7QbAHVuAwJrMccATATjAlYQxwEzC7L+eiWnAQLZRwFKU1L8uxVXAQPAmwAhSkMDeQUbAkhBkwN9Rh8D9q4jAo3VFwDevUMBIoYPARxiBwPocY8AodUzAdcJmwDHYaMCuUo/A0yzrvx2m0r84PWrAgR/5vw9Og8CbA/i/3pgWwDBgOsDYVvu/",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=2<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "2",
"marker": {
"color": "#ab63fa",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "2",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "proPQJ/WxD9V6Xq+RJJTQOeLs75f6a0/3IpIQBRafL7edqw/P+ETvt0eTj9T7kFAIwttQMmr/T/rGgQ/XXvqPpqETD5xhXk/e7QXQNpUGUCnBQtAAPflP/QxYr4MpUU/jZ9EPSxOPz+UD1u/0PKJP++izj84w1hAbE89QF6akj6HQa0/eQnWvp13KEArNVe/wl7xP9r2Hj6JC4I/7M+eP5cTyD8tudi+erwbP7bXMEADQtQ/K9kSQEBnLz+6e5C+tAtIQJPPV0CYtUNA6RFSQLX1pT/EQds+Rz1tPwzhuj8FUhg/AlYSQHWNUD/ubWlAqAZPPlEibEBVqTc+UNZCv9wUHUBj3pg/MRuOPo2WAEBWLhhAvFcXQNu0hj/FSEi+njvgPwucoj+zpao/swJXQP+aQEBOsxtA9wCWPhjMzD+XsKw/OgD1P33Ec0An6VZAj/iGPgPOXT+vyA9ANLTCP1PlJD0WZRQ/I4MWP+cqgD8VrNk/zoxxP0cNtD+fSpo/x0tUP12OB0BL+IE8DtnPvhp/Jr+Hfq29ncmsvpL8WkCqUXk/4gE9vyRsRUAB6K4/o9ZIv051RT9c+QFAVKYLv6GbJz+SUkRAsUAlPMuDH0AK308/SFeqvt3/Or9X0pq+GXhFQLVgU0BYumlAjsuFPxPlOUBGP3NA9MsOP8Id9j972S5Atdk0QJvdwb69uZY/SVcOQO/SJD/Jc+0/DNCMP7xojT/+C0k/5ZtRQIHGuL4toHo/xo0mvo5+CEDmJAa/31l8QMs6JkB/nRJAwYYlQNMENz6KF/S+42RCvmZWC0DRsJw/PZLHPxt8mD5sWta+Rd+yPmHp/75TiyVAeeDVP+eLYD84PbU7Y10mQG9L5T79nQpAPAg3QM7Uub1fSoo/bFA7QDNLSb48/UBAxPMJQFrQEb53R/K+okiFPkrh9j8Ia80+htomQAe0qz6G6lq+kHsoP9qDWj2nB8Q/5TxavEcwN79mdx5ALJ4kv51ba77qRaU/ha+fP9O81j03SM0+cVc9QHuTgj6o0XpACV8/QAWSqb75nbI/ymBHQHMOd0C2sSFA2ngTQAWCST91HzZANlilP1dlKUAInLO8GfPaP+4hAEBAQW0/reY1vyEx1z8argRAOYA9v2uCjj8SJ8c/adDKPkb+P0Awtbs/LswyQJYpFD+6gEI/WfPpP4QHhkATvgK/t1XhP+09hLxRtC1AAiWPPvDDnD+8+ge/z8KQPx67NkBgmaW+KGAIP099X0D4zAK/y9BKQCl7wj5kC2NADSELQEImnD9YCfY+sDRmQGWD3D87pwa+qeEvvzzIVr4O7IE/I0i1P9KYkj+efhI/7u06Pi+jVT+zzZk+kgc6u+woLkBVvx+/IqDKPWRAkj+vOKY/YbhHQJ/GhUBfJhBAE8G+Pa0EHUA1OgE/5cONP8kVVD0e34o/qzwdPysP7T+aTUO/2UxBQHG/ekAKE6g/e2hpQFk7GEDZSZw/+/ZKPwTgLkDMxMI/1B0SQOlUir4jNBRA7iEvQG30oD+lMgM/LDJYPjnFX0CLuQi+CoCqPhoq7b5RTgBAmzItQPu/EL/KxT2/TGEWv/BxSr9FvJc/wOU1PxpSD0BzEDtA/p+oP+nQmrz6uiBAELiVP0Btrz+XzBA9rV6RPhDfHEBujUlAmWsev4sJJr0DGEO/NgteQLKuG0AY2Iw/ACbaP6KXYL/H1uE/kXUlQJsUG0C1H20/2ZsbQFun+D671f0+V7gUQJMXyr5lsDW/aBM9QKgl3j+7Z88+U4lEQLwl6r4kYwM+ye9Tv7qcQz1FiDK/59kxQBGtLUDHlaI+wm3BP/B3PkC+DUU/nInwP9zoCL8CHVpAnuMpQDappz/zlNW+cJ5ZQJGCKUAw6pw/JBzIP1aavT7l87O9gnjHP+6qzj+6dc48U+4FQCwkOD8ZeSw/apb0PSYObL81XZ6+DpJfQL+nSz9zuSS/lnApQNfoST7G5Gk+Gbt7P8ZyIz+7BB2/4l4Kvx17kz/o+yk+q5XKPxYLuT+YMWxA+yBeQCQZEEAFEQA8474NQDXWPUD1iiZAjkWsP7jawz8GpjpAad2bvlzm4z48bNo/Fv3VvkTazD8XCps/tdBzQMkzQ0APpR5Ao9qFPy6g0j8qZ90+nV3YPlEsO0DGZ0BARQcCv3VM4T44A2k/u0G4P7QRVT+RvSdAAiI8P7XC1T+w8+A+CCwCvx9SFL8l7Vm+qXb6PyyvVUAeypY/dlUQv4Px/z6mnzM/c7qgvgm9SkCvtZ4/o+8oQHvHAECM4g1AH7Quv6c6y77yFwpAYy9JPUWh5D/Im6C+8h6jvjr4TUB0JQG/k29JQFJMuT5BPVw/adRyQM5PEUAvsWc9cf4evxQkKEBgb8m9qJsxv894lD+gF2A9yKgYP6l6xT/JFdG+Q/TkPkxrDb9UkUFAGx0TQJyUvT/oXlRARuugPx30Xz+AHro/ZxX8P2buDb9E1sM/ToQPv6F9Mj9fm149F08CQPRBdD7k5yhAfBgZv1U0RkCuPjFATZGVPWvNIECGmjZAzfiVP2Lsz76ZYLc+lxsAQKNbFz7TRz8/g1QYQEv0v70+RFFAu+VTP3NMY0A86g4/+UnxP/tCHEDqj7u+VhE3QHumgD/T13W9Js9JQMczIz2sGgpA",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "fqIjQU2wEkFWURhBaCUjQfkYC0G/aApBDX4QQWBXCkHPPwhBWmMkQdIrDUHd3BBBAngUQUbmDEGrGAZBXT8iQYOTBEGoxghBMpwaQctuDkHZXRBBXYEWQT6nJEEs8x1By/cjQUj7HUFVfCJBftQKQZkOEUE0aAdBdJAEQcHU/UAsq/hA7xQbQe9FCkFyxChBOtsPQYN4HkE3EflA8kwKQbiT/kA1VhdBtd4kQd4bAUEK0fVAi40eQQyTHkFRRCFBBkwMQd2dDEGKaydB6AEjQXO990ACvipBW+sRQcpfDUGSaRFBsOwbQTKgBkFkdg5B9i4RQU12DEGDhgpBGvIYQREnBkGaEg9BYjMOQYDPEUHLuQhBVtAJQerKFEFbVgBB0HQHQeyLAEENLxxBAWcUQfaeCEE0qxVBnTcOQa5sBUFh1/BAiqAEQQ5YHUF1UhBB58MmQf53/0D3IR1B4I0mQTFuFkGoThdBALgcQRfxA0Gop/tAYNz3QJ4V70ARCRtBAHYLQXb2G0EaTAhB8mMkQQJKGEGQ3BdBhaoHQaQ8HkHMnwhBzUEaQe8MHEE7GAdBBqQYQYdnE0Hv8RZBCn0fQY/AFkHRuwlB8o8NQfVFD0HbtQ1BXCAdQTpSJUG9YwRB5QUCQZvfI0E5NCRBbHUiQdiAG0GV3RxB/nIRQWu9F0HiLx1BqeUMQWeHC0GB1P5AP4YDQTPDAUEe9PNAywwNQfMCDkEvQxRBD6EmQZiMDkG+IwZBGI4dQcpNCUHLzCNBsREoQTIIFUEgpRxBI9MKQZPQFEG1mCVBh3gMQV80DkGVpglB1YUGQTWcH0FX1SZBIJMKQfRnHEGY4gFBmYQMQT5gCUF7MR5BnS0NQaWHBkGc1SZBIZ4gQcnBBUHRESJByC0oQXgVF0GhWhlB+6UgQbTWDUGodBdB+MwJQWZCEUE0hQlBdzQHQSx6I0FAbwxBZQL7QCM9GUHBPAxBBWoIQZWRH0GVHiFBqa8aQW5HDkGyCw1BLcETQczZA0FVxRZBn4QCQSp0KEFkyxtBa7sZQcPPGUGMUwVBZ7QHQZT+JkG8vf9Amx8jQXHpA0H90QZBN0b7QFmp/kD1QQ1Bk5QnQWLTDkGEvA1BdOkJQbFBAkGsQhpBkpUpQee8DEG3YwFB/L0jQdybCkFb4xlBwV4MQZOoJkFL+w1BS8MFQduZJ0EZCyFBiXcXQcH5BUHyZAxBk9oQQcs+EkFKrR5BREADQYD1JUHlqS1B1n0NQelwJ0Gtuh9BGUEbQdejBUEXpBdBHC0WQamMC0F9JwxBVtYNQcjkDEEJbBRBOWcpQRY/H0EcYwhBK/0IQXe8FkFKiwtB+GQgQU1FDUFqIyVBG2MBQd1oLEEp2StBzsEdQTayBEHBTgZBQZ4EQd4fI0HPAiRBcZ4FQek7HkGs2QhBBbEAQfDZDkEG1RlBCsoOQU7kDkFYjShBGfYFQbl/H0GwqgJBYE4RQWzVF0Hk/QdB+JAXQcsaF0FALBhB13oLQXerJkFhIBhBymIJQXicEUHZTwZB9hoPQQhYE0ENAAxBS9ATQSjDBkHPABhBWPQQQWTQKEG0tSRBjGQRQeyxHUHw9xJBezINQYOfA0HlghxBTvnyQGqQIUHOLv1AcDoGQQ7eHEHUMARBw6cDQe1rFEFwqAZBp2ImQXHYI0EzvidBPZYlQc3wHkG94vpAJtsAQbCZIkHaBv5Ak5IkQddf9kDD4BxB+EYaQZXYCkFxtApBDlEWQUy3CkGh/iVBY3EVQTa8+0D2DgZBaPEgQadiFUH1jARByEcqQV/5GEHu6CdBmgP8QARFEEEkHBNBxOT/QGOHCUH6LRVB9KsSQZapH0F+ZRtBu8QYQeZ2F0FeySZBZU8RQTt4EEGt/wVBYAYAQZSTHEFumB9BeuwJQbYDDEFPxA9BuUIGQS41AUErpxtBBZYZQc6mGkEJTQZBrBIHQQkc/kC3qA1Bn3cPQWDIBkGwBAdBDd4SQeDyCUGcHiFBC1YTQbvcCUEbqxJBEMIOQS0tF0HbtRVBKmkTQSGEA0GavQFB/a/2QLrSAEHLSPxAC/oQQQePCkEU9QlBRbQIQdv0FEG/8wBBPcIFQSDeGUExkghB7I0kQXeVA0EYOCVBWtACQT59JkEltR1BlTQBQcr1KEHHFiBBJW4JQVfSBUHT7hJBShn6QFNQFkFKNyNBJFwPQe0I90DJHg5BeNUSQbhvEUGM/xdBJssaQbLJIEEsRAJBOoQlQYrhE0GRThFBmtYbQa5HE0GGPfNAPDQlQQxdF0FS0gxBongkQSS7FEFdcQtB5wIEQUGTCkGbYCRBpckIQYVDCUHcPQxBhvUfQdfrJkHocQRBd1IXQW5TCkFIhAJBBXMdQUkSA0F9IQFB7tskQYZMAkGjxwxB5CQUQRExFkGFOyBBfLkMQQjCIUGHWiRB4JgIQTFgI0EJQAdBFcwfQX/dK0F/5QxBbykWQVBBHkEF2fJAbFYjQcRqCkFxygtB/e3/QHLBBEH08yZBO18PQeSdIkE8ohhBY/kNQSZqEUHFfQpB7CMuQVwvCEECrwxBKiAiQYzdHEFr+QJBDdkWQRWMEEEdjBJByI4PQf3nHkE1FQJBwEYQQba/BkHQUAlBTN4jQaqHEkHIcBFB3DsoQUOoIUEbDQ1B",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=6<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "6",
"marker": {
"color": "#FFA15A",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "6",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "R9ipP409RkAIhNQ/suBSPy0Y5D/FI9Y/XejcP5k2qT/Jey5AjYjIP9KOpj/hKgZAYAfvP9aDQEAs4tQ/YSGtP3m8mz9dloU/sVhwQLB3A0D4bEE/ZbzBP1ANF0Cl8gBA7JfbPwsbjD/LgNA/MVHmP+y98T9kWu0/R/DrPxVxB0CSj60/Dtl5PzBOmz+eMDJAFgovQMt6YkBh81pAwY8LQBttsz8bg4Q/I8vWPyr4zT8Exco/TJuaP8rLpz/74RJAWBkmQAloA0BuYQlA3TZpQLRuJECrloY/V/kgQOk05j/H85k/9RQOQMprvj80pYA/g2B1P4Hikz/VGpI/7dfIP8jhnj88+P4/WEwAQCX05D8K/PE/UKpUQNyoGEBxbVZAzwK5P3AI2j/ElIU/vYGAPzrcuj9ostI/qW3vP+3JxD8LEa8/Q+/vP1Bt2T+B6bY/axLtP3kK3D8ur7M/zKOpP4dG2D8hLiNA+Bx2P/IdmD8UpKw/M4e2P2c4REA0HGk/UHj9P3yu8D+0/bU/hO7dP5lyDkAqn0s/F9iZP67A1D97QpU/pd/4P9Fspz8tF1JA3SqwP2BTTkDSvyhAe94QQOqZlD/2wvE/nzpkP+fkpD9tMW4/pc3zPyZ6B0CEqA5AnepsQHzr4D+8sfs/oOa5P7ZDiT+phdc/bT8KQHq8aD9K16w/1QNyQApA+z9n2ew/hrbsP/PX1j/wmOQ/rFXTP5eVoz/sURNA/0c0QK4yij8qfsk/ImrTP+CQrT+dxNY/ZTL0P4QXrD+nvSpA0I2KPy0/jT+fvu4/cUe7P9lW7T8Ex44/SHanPw==",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "vZ02wPyvMcCHqDTAa70ywJ3ENsAm3DnAgahawG9TPsBrMnjAxShbwDqRRsAftGbArlYvwKa/NMDnZl7ATmxnwMETKMAZn0jAuzVHwDPwXsBnLzDAZZkYwNWK6r84GEnA6lQ4wO0qU8DLcknATzJJwCarM8AA2jHAPvo8wFgJQsAi4DPAjglKwCtjUMApRzrAoUg0wLzhR8CGAjnAIyIywCLGJ8A5oy3AVJ44wO7LYMAkMVLALc9cwAcZTsCSFHvA4ns4wM+aO8Bf2jfA++8zwGAuP8C8gEbAr0pOwEtkPMAzbh7A6UpIwMFlccAVU1TA/OI9wO3iNcBAv0vAOeArwFAPbMAuwmrAGfxDwGJlacDWhknAKBsvwAX7McC6Lz7AD+wpwBQlacCOzyvABGlWwK0CGsCirzXAks89wL88R8BwVVDATpRgwFp5McAeijfATas/wFsxQ8B4ol3A2YlAwFyZUcDhiV7AbqE6wF5TPMCpbWvAD90wwOlqMcAcUkHA+/dKwFHzccBBo2HArpVZwODHD8Cf3kzAqzBSwHBpc8BnMh3AEOxkwBLeTsB6SDXAC9lEwHtuLsAShjbAItBFwPTlUsDf6mbAPplGwJ8IUcCifhjA+IB2wNiXK8DJN/u/7HQ2wMb2M8BHNE/AVmRTwK8DX8CpZh/AuPJawDT9R8BwSWbAmWBRwEkcCcATl2zAkEIXwDPTZsAOBivA9KZQwBusU8Bj0XPAppsrwAHXIsDpOH/AYj05wA0qPMCUU1DA0X5vwFf7OcDVf1XAZApHwOY4OMCoqEnAkjYewEl5TsCKPRPA6pUlwA==",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=5<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "5",
"marker": {
"color": "#19d3f3",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "5",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "SzAUQFSWUECk8YtAtcVFQFwwi0AQ74hARCFqQCiwT0BhDIRAMI1SQHhgh0Dbcy1APAKNQBKia0DxH4pAXbqDQLxYlkCUQhZAjK11QPSSl0DnhYJApcw4QCS2X0B6R3FAlFWXQCHixz898DlANueQQH9lcEB4lVlAbCNsQBJ9i0DdZDpAXCaFQIRsjkDkeYZAFyiAQMbVBkArpWdAvBN6QFmThkCA4JFAp+eRQIreXkAlZVxAPwOEQPT2XEBxsZZAi4qQQO47gkA01Y9AwzxJQD9dbUBszn5AzRCBQKc1MkBjMXxADNKQQLAIkECB0oVAgM5vQApFkkDL+nJABLg7QE76hUBVnus/gQsiQEjteECUblZAS8hnQDngcED1F0RAlJmBQAWzgUCpwVNAPGBlQK9kikBMMolAeDSWQEdhkECFXYVAmJaYQBoShUD8/Y9AeX+IQAK1kUAZk41AGUqSQLMDikAe4mhAY8aMQIg2nUA0TIdAFjBpQLdSaEBgaWRA9XU6QPN2gkAVSoVApu1zQFwWZUADBmFA6dmVQD+NTUA9yJBAWfKJQIC2g0B5Ok5ATAeVQNElgkA72HJA7CiIQE5qmUAIXpdAAdaLQC7akkCfZGBAXhmZQFPmjUButY5ADsZxQC9hY0CrO4lAFzZpQHDwjEDkwoJA/E53QPouiUA3aZJAhC41QFtkgEDW95FA4flkQJAOhkCqrI5AFl+XQJAXKEDT6x5AxatxQGE4i0CyZIpA5EiaQD9wkUB0xFxAmoNsQGITWUDzGhRA5blfQNYLeUDp1lZAQAJBQNYrWEDVEUBAyvYlQPnlkUA=",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "CN04QR8XMkEdXkpBFkE0QfgQQ0H5sjdBZmw+QUcdP0FV8DRBWCwxQQAxRUEbeDFBh0VJQX+nPkESVUZB9Yw5QYIxRkGG4jhB+/9BQVmNQEGip0RB7+A9QbwiQ0Hdy0FB+aJHQSxwM0EvAjxBQ6s7QQgxRUFLBj9BecFEQXUvPkHE6y1BlR05QZIvPEFu7DJBVK89QRqANkFn7UFBXiE8QaMPP0Gl+UpBbVxAQUIpMkHnBTZBbXZLQbg1MUEOTElBzQs0QXapOUELdEZBliY6QZuSRkHEOURBLFk5QVa2MkGWcj9Bv5lIQY7QSEEaVUxByiA2QaXjNkH5wzJBBpYwQWw6OEFN4S1ByHM5QWnvM0HdXENBjUU4QYcQQUHQCTlBNj0tQbVjPUHNTjBBfectQR9DP0FWe0VBt+01QQNMR0Hj0jRBLkZCQaPeRUHs/kBBaZ01QYIIREFnfj9B4bxAQZ1aQEGc5DhBqrZAQXIGSUH36z1BuJdGQYBDPkEmIjRBw8wvQYeQREGyKDpBpvMuQWwjO0FypERBjZ1JQaCGNkEM1ElBseU2QbWbOEF/2jtBkWQ8QXZJSkHsjUJBIe8yQbBjQkE9hkZB+ARLQdNsPUGdskFBpPVLQfDRTkEGVkRBq0xAQVIaP0H+hUtB/hI8Qe9fRUHvnUNBYhs8QeWhPUG9akdBD9I3Qd7LPkE8nEJBFis0QZn4O0Ex/jpBJhREQTsMO0ETly9Br0w8QfvdOUHe8UpB/3dFQSLtO0Fwb0BBw7czQSAfMkECgjFBH44tQbR9P0E6Rj1BrVw7QQRGQUHyPDlBafg2QfX1T0E=",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=1<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "1",
"marker": {
"color": "#FF6692",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "1",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "SY4UQRYz5kBzRPVAhA0JQYTnJ0FPEhFBzKTgQLfRKUH7ywdBEMkMQYREKUFMlANBIxUkQWXUAkF+3ihBaGofQT3cHEE88RtB+x8lQeO89UDwvSNByj8cQdb7/0DWsRhBJtcCQXyPGUFmbhNBFGUgQZa3DEETmftAnGMSQdwZGkF7qRtB6m4MQZCnHkErcgJBJXgkQZqcKkHtVw1BNJgjQeK2FkGqbxhBwsoCQZuVG0EijPxAxQEeQdgMGUFRdwFBKiYeQYpXBEGxQR1BYhclQebPC0FWMhlB+oUWQcESIEF8+CZB3aAEQXEo30AI6BFBtKodQddTCEH/5BFBa5oZQebFBkGr8CVBL4HtQJC/HkFTIhpB4SwUQQFfG0FVlCZBKHAaQSArJkHUxAVBitQcQRRTG0H4YStBbVcLQV9WHkGg3f1Aj/jjQLXeH0FG9iJBpxQWQVpqHUEYeSBB+/YZQfthJkE+GxtBnH4hQfK7IkGp0BZB+bgkQT+0EUF7qShBDeIfQQbU4kBxRyNB6AUMQd6dIkGEex9B9eodQRGV/UDeiBNBs/gZQYxNLEE06SJBk/f9QBKgDEFcFQJB3TfYQAxR/UAzgQ5BpPAdQaKZ7UBQGBlBzCTqQJ+GAUF8wBlBqSApQewzGkGdntZACBsTQa/EJ0FkPRZBjtYSQQQiE0HBzhdBuFURQeVGKEEZmBhBTgwFQcPe4UC1+O1AOrQSQf6aLEGCBvxAJ8sMQQvOE0HLOipBkaAYQcYh5kC7PhhBKG0PQRnOJ0G5yhdB6skbQeMpJUGWPSJBVJYWQaoGA0FBjRBBnznoQKxg5UDu7QRB14YrQSesE0GOhhRBhhQmQT8XDUHVJBJB4NAkQWfCDkEkmB5BuaYkQeGrFkGV0OZAJTwkQYE6HkHg6PtAE/4fQV57FUEvwB1BVK0XQc3XHEH11Q5BydklQdvZBEFqGgVB8UQSQapOHEFwAhRBE8geQXdVDEHLhRpBY0nyQLOGI0EuTg9B6wUaQaOKEEE4i/9AApQOQZZpFkFT/hFBbnwcQVVREUH9dxRB4bEdQf+oBkFnVeBAMAIOQUvtIUFaEyJBj4btQC2dDUHuDCBBkxkeQRsRGkFEaBlB3qcHQbLJEUFMrRNBbSYVQd4XFkHbIyFBnXIUQZGHFUHVygJBv5QYQdxCDEEHQytBpuAjQWHLDkFFrR9BVrYWQZ6QEEEZJCRBe1EYQTQEHUE1HC9BlZIZQeRQF0GBwPlAM/4eQYgz30CzKhFBnYsKQS8i7kBi+fxAWeYLQZyhEkFygh9B7MUOQVAM0UC/U/1AC2QMQVuq+kBp9gNBFIMiQXu5EkEfSA9BEC8YQfHVI0FzFhRBJwMgQVUhEUENYCZBzhAgQYTz7UBLjQVBddYRQdYBD0GRvydBOyYFQZarAkF1SCFBA0cDQSMRE0EYtyFB4mP/QGuc/ECQ5xRBV8UKQX13GEFQUxhBT5X+QOejHEHe4AhBMJofQS/mHUFmxRhBoVHpQPYgEkGGWR1BYx3sQGX2DUFX+hJB//cWQVYuBUFmhwZB53ERQVDQ8ECMngBB4FIUQVrqCkExSQhBVTkUQdxbHEEvVC5BITUTQfKpHUGsqCVBc8ApQePXCEEK0yBBcTkhQVrd90AmuAhBfowqQS9bIUG1iCZBsZ8ZQXyxKkFnnBNBZvEqQUNYLUEQTBVBR/UQQaAyEEH+sxVBqGPmQIXcBUG11BZBvAX+QBsiE0F1XhpB5mkuQWdrC0EJDxxBeEMMQbFWHUEsCy5BTu4DQTZWIkFTZQ9BXdciQV/P+0B9qiVBKREKQTXMHUH0DhtBfbkSQUS29UBa3x1BVaYIQTPpGkGf9w5BmDQQQdVO80DHywBBl1URQUAXG0GIOPBABQUeQVEJF0FjJiBBvz0pQTxOE0EEV/hAGnsEQS6BC0E8lSRBwn0WQe/IBkECLhBBoWgWQSU2JkFVjw9BXjUDQdAvGUHDyhxB4iYkQZ8RGkGR/xVBYPIZQdQt+0CSyQpBhuT5QKsRFEEUHwRBQ9odQaq7DEEDMhJB6F0UQfA5DkEiaAtBw+ILQcte/EA3GPpABCweQargHkFqThJB73IgQeGBG0GgiC5BB48BQeSKBUGSAyhBSN0gQSbVFUHjSgxBP9sZQW6N9kB3zBNBmBEhQVniJkHzFfRAJWXcQEu5KEGXTBFBbeYQQaPzJEEiCxdBkIUPQdLIKEHWfB9B5AMDQTo1A0F22RhBg7QAQdNSGUHAsR5BpgYoQYmhDUGZmQBBdmPqQOY2JkHeF/xAIfkcQSfeFUFFt89AxscoQV66E0GEcxhB+qwbQetGIEHIsiBBMNgPQTzmH0EaTihBPUIBQRzsAkEtNh1BnnESQaddDUHV8xdBYmsDQfjMBkFCzB5BUTLlQLBvHkHPXiRBIgUcQXcqFUG2d85AxxAlQW4XIkEEiwlBKQHqQJrYIkE5PexAt4MuQWsDKUEjsSRBNB0XQb+NKkENGAZBCr8TQXYsAEH5EghBXxEXQX8pDEHTRypBCgAZQZx+EUFaQhZByBXsQGzwDkFoHw9Bj60aQX1JGkExGxVButUnQeNbGEHlUOVA8FImQV9QGUEOIixB+zwjQYMO90DLJgJBuwofQXP1FEGvCyxBcGgsQTdpKEG8YiVB56D1QA4gFUHigQdBxVwTQZZw8ECE5AJBkAwZQQg6FkEKPiRBOqYWQRhPLEH9rh1B1IXhQIngJUFx6fJAfI8ZQQo+50AmWQ5BNHITQfZgGUEUhwNBDq8eQTTvBEHI+g5Bf1YXQQeRFEF9YwxBe2kbQXCqI0G2/gdBjUYvQbJdH0FZGR5B",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "Hta/wMfD2sDJ3t3AEHnZwP7Mw8BgCMDAaXCtwNhAv8DeVbrAqdeXwC2rtcBI3bjAhMzRwATNrsArrrLA/wbVwG2PucCXpbrAKeeRwMFXwMCLY6fA1WrEwAcJtsCYjMPArNfiwLp+scAq977AOjHUwPh2jcB/pNfAPPrGwPhricDisrLA/4TVwG27ksD2BbTAsFytwIFPvMBPbc/A5nymwPSflMCmU8zAPiDfwMVnpsAA/9HA47CSwDHnosA/TMPAhIa6wBzivMB6cK3AoNylwE5xl8Bh1pjAgLXtwFZEi8C+e5bAi3jjwIOgvcDQhtHARHCtwFBDo8DhW8vAnajIwNwmpsAWrMnA+17VwH1jtMBte6vArZnJwO1gtcBQEKjAgcHiwH/om8A/oNPApNLXwAMtysA167fAJXzgwE7issBhSd/A2tDgwPfMqcCpq6/A7LLMwC5dk8Bsy6HAtsGOwOHWscCK4dfAMx7OwHiT1MACj5fAqPDewCc30cCZSsLAB/ttwMvqmsAJX6jAmfy7wOe418DaEaPAVLWLwPNLxcCQfNXAtDPFwIkEwsAlmbfA2SnVwB47p8CLDsnARfe7wCc42MCN2t3API3WwPEQ0cAm+crA7XvRwF8438BJbKLAM3ykwB64f8DWM9DAJK+5wOpyqMAl7NDAxCDTwPbbfMAzt9TAcbS+wDE9wsCFUZvA4giUwBnSwMCWirnAB+2ywJ3essB84KnAynXIwJS/x8B4A6/Alq+4wIE86cC9ddLAnbGhwKLYkMDPl4/Alq/DwDbDn8Byhs/ASqSYwNgAocCn1uDAOoivwFjeo8DbE8/AonS0wESz28CRaXfAMQqywHGVwsCDW9XAn9zAwDZMz8Crbs/A0buDwKg0tsBeX+DAPNPMwPALtsAxG7nAd5iWwI3j38AnpL3As7qkwMEgusBq6qbAi1inwEYJq8A5zLjA2lKewMdY38BJT8vAe7CTwCArlsCPEY7A053CwH2SrsDkpcHAfUazwOkQgsDElt3AO021wKRv2sAb/ODA9KG9wCEv0MBAAa7AxniRwKsOn8C3L7PAk6ekwHB8tcC4VLbA6v+twGxwssDOr7XAdaXHwCFxo8AD/cbAn8PdwJYb0sDeHKfAkeaxwCxDsMCXcqHAuUutwHlXzMCS77rAvmzdwPZz6cBSP6bATPeowCkYycBNcI/AhPzDwAqEusAy+NLAXMi1wDbu3MCqFLfANRqWwMMDwsDfrbvA8h6swHjkyMAdSdjAFavWwGY6rMDp/qjAsYPowJYW5MB1VJ/AzYahwNWM1sBo4cXACEbiwMs+nMBLEa/AGdubwHSmqMCkudXAnXTcwNSBqsBhB9HAChCfwOBNqsAaq8nA1Nd7wLEn4cAM3ovAzxS4wPx70cBDWpfAtbnLwP3YwcA0t5/AL4TdwONnl8D1RKPAV3SowNZRzcA+dqLAAeHTwNTVq8CTP4TAfi2owIn918ADfaLA+0vgwMpugcCpNaHABva8wK4j1cA6AJPAEKW+wI+HwMBBqqfA1rvdwP8k5sC/hr3AdATlwMri18AKTq7AsCaZwGpk4MBiOI3AfA2ywIj1hcBE7MrAAynawP8zyMDIzsnA8J6lwOaN58B+U9HAsv+WwMA05sBPLJ/AWpCfwHwH18C0eIXASB64wNEFrsAmUcPA8SS5wPM5w8AY1azAgEKmwMTj18ALad/Aq+TcwFPz0sDHsqLArmXjwBqpwcAX5pLAoT+/wPIDtMBVKM3AF1jMwIPlusAVoK3AT5bjwAY0g8D435vAKCq7wOtVtsBzv5nALhqpwF1b0cDMS7HAzem+wGqg0MAZ0bfAn2efwFL80MCOsLvAPTjUwBIuuMBxNM3A/MGTwFmjicArhNbAZZ6lwOCSusBL77bAObiswKZJtsAUj6jA2lPmwDgQ1cCUDsXAwsjAwIb5ssAww5rATbaqwPlXs8A9rbfAicXswGI3psB37ajA+YKdwJVNksDqDrPAcvXCwHu14sDSG53Al0DTwADwhsANtbfAo7G0wB1in8AoANfAEs7WwM9pjcA61bbANomuwHW+2cDRE73ApWnUwPlsysDSh9zA32xewMQrzcDAY6DAtArLwKavpsBw48XAOrOXwGl7ncAcedjAXb+5wByKmsBAhqvA3+vIwDa9rMBs9tTA6vnPwBzI1cAkfbvA6m6YwHT/l8CRxI/AIIC6wOGTo8AJgqDAVj/KwD0Y1MDNC6vAyA/kwHOiu8AQGLrA5/OXwOmXwsCGcuXAn8ziwC4pjMCnT+XA61t8wHhAwMAj2s3A5fmNwEKvpcCG3snA+3KfwH+t3cBjBofABRTmwNwXsMB9IJ7AyDqcwIZ9vMApH4nAwyW4wHjbxMCcEJnAXOzSwEJ1uMD5HJfAfHeuwMZEh8DgOdrABfHgwDlv3cA+1qrAsqXHwEgoz8Dfy6bA0EvpwPcgusB/ieLAFh2xwJJiucC7qLHAMUriwPEXrsDaJbrAAi7lwNTw58A75tvAwMvVwEJrl8BW/ZDA/ynFwEDlq8DyBIbAUuC0wJnno8AerLPAfm7kwF1oicBgMKvAq+eewC+0vcBa6bHANM3DwMBBxMA9xrzAA6q0wEHr58C+OdnAV8/bwCb9zsAmY67AWDyvwNDpxsAxvcjAyhjPwCpVu8BVIKTAjc6QwGjdzsAGb9vAGbC8wCoZl8Dkms3AuzTEwC6XmsCutrfA1B21wJvjrsDxDt3AzBzXwN5FycBVSdLAmmujwBLp0sBvHNvAysXGwMVB48AVGrnAxtCnwOVuyMC1Eb3AsE24wMsSs8DsHbfA0IC3wBf90cD3mbbA",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=7<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "7",
"marker": {
"color": "#B6E880",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "7",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "E4A/QOCtZEAFCTlAd5JAQLX2XkAwX2JAoZsMQN+4PUAGPX9A4NIwQHbum0DRBZNAnKJnQCsGTUA1emJA2xdRQH5eYkDF6CdA6d+RQMGJpECM/2ZASSZNQD1qbUDyyIBA12RUQPrTWUADnVlAISdqQMC4p0CP7phABMqSQDXf4kBYs2BAjeBSQGxZkUAJt2JAafNWQFhgbUAeDnVA62BVQLCaZ0A6ex9ADmCNQCVpYUBUUYhAk5+UQL08XUBbnV5AMFQUQAyPZ0CDWU1ACO1rQO1SYEA=",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "66joQGorzEBuXuNAtMvlQPJrez+P+cpAdz3yQFdD7kCSRhE/lJzhQE4Sz74smcK+AV/KQDpI3UCCC9NApZbsQM6l7EDvgelAgEuyOwkMtb6AbL5ApGfyQI3ZeT+Am+Q+VhbcQBIq1kDQF85Ar+7WQJ3zhL8RDLe+1byhvuU7XMAbS9BAI7DhQJ/aKj0ZT8RAjAHXQKnwTz/oCLA/vuHTQKylyUDqte1AGnTyPD3VzUCAXoQ+UHz0vSO31kBDtc1AJhHuQPilzECTLuBAMv+nP9A3gz8=",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=8<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "8",
"marker": {
"color": "#FF97FF",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "8",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "Am3LQNER7UDRhO5AQl/IQLV3wUB2drhAMqLSQNOJxkAs7r5A8vP4QAItxUD4V85Av1TfQJl13UAvSsZAr0HRQA/70EAS6dVANnPUQABWwEAcssVANaTAQH7w2kAwl+dAU9jUQKuqxUCkv8ZAHBDMQOOT0EAV8L1As2TGQNmWzEBKx9ZAJ4jaQA==",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "GmrVwJy9rsCfba7ANvjjwGvG08CFhtPAENrbwG1D28DuyOLAJi6hwGAA4sCZwc/AXmGwwCWA1cAdoNvAQdTewKF50cDyU9/A1u3cwFDY4sCmc93AmdvgwFNf28CF88PAccjEwAhO1cBYTObAUIPCwPip4cACf+TAfxfpwPL93cDhyN7A3pfYwA==",
"dtype": "f4"
},
"yaxis": "y"
},
{
"hovertemplate": "Cluster=9<br>UMAP1=%{x}<br>UMAP2=%{y}<extra></extra>",
"legendgroup": "9",
"marker": {
"color": "#FECB52",
"opacity": 0.8,
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "9",
"showlegend": true,
"type": "scattergl",
"x": {
"bdata": "QjtaQdxNXEHPsFtBa1RcQdiqW0FIJltBSPVcQf5iW0GGxlpBspRcQXttWkE=",
"dtype": "f4"
},
"xaxis": "x",
"y": {
"bdata": "Qz4sQQs+KkHbzipBBzIqQYDxK0FGMytBsJ8pQVAiK0F7QCtBjvYpQegbLEE=",
"dtype": "f4"
},
"yaxis": "y"
}
],
"layout": {
"legend": {
"title": {
"text": "Cluster"
},
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermap": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermap"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "UMAP with Discovered Clusters"
},
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"title": {
"text": "UMAP1"
}
},
"yaxis": {
"anchor": "x",
"domain": [
0,
1
],
"title": {
"text": "UMAP2"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKgAAAMWCAYAAADVur6uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA5kdJREFUeJzs3Qd4VMX+xvE3vTd6L9IRpIMURQWpFvSqqCjYsFeueMUCdmwoFuwNCxcUxYJYEQUVQWmKCALSpEN6b/t/ZvwnNyEVSM5Jst/P86yYc87uTnazZd4z8xsfj8fjEQAAAAAAAOASX7fuGAAAAAAAADAIqAAAAAAAAOAqAioAAAAAAAC4ioAKAAAAAAAAriKgAgAAAAAAgKsIqAAAAAAAAOAqAioAAAAAAAC4ioAKAAAAAAAAriKgAgAAAAAAgKsIqAAAgCO+/fZb+fj42H+ddtJJJ9mLW1q0aKFLLrnEtfsHAACo6gioAADVxpYtW3T99derbdu2Cg0NtZeOHTvquuuu06+//qrqEM6UdJk9e7bbTcQR2Lx5s6666iodc8wxCg4OVmRkpPr376+nnnpKaWlpjrQhNTVV99xzjyvBHwAAQEXxr7BbAgCgEs2fP1+jR4+Wv7+/xowZoy5dusjX11fr16/XBx98oOeff94GWM2bN1dVduONN6pXr15Ftvft21c13YknnmhDm8DAQMfv+8svv6zw2/z000917rnnKigoSGPHjlWnTp2UmZmp77//XhMnTtTvv/+ul156SU4EVPfee6/9fzdHiQEAABwNAioAQLUYpXL++efb8GnhwoVq2LBhof2PPPKInnvuORtYVXUnnHCCzjnnHLeboZSUFIWFhTl6n+b5MaOM3FDRoZgJQ/P+Jr/55ptCf5NmRN+mTZtsgFWdufE3AgAAvFfV/yYPAPB6jz76qO0sv/7660XCKcOMqjIjk5o2bVpouxldZcKgWrVq2WCkZ8+e+vjjjwsd88Ybb9gpdj/88IMmTJigunXr2k75WWedpf379xe5r88++8yGTOaYiIgIjRw50o6UqSjmdzTtee211wptf+ihh+z2BQsW2J+3bt1qf3788cf15JNP2qAkJCREAwcO1Nq1awtd19Q+Cg8Pt0HfiBEjbLvNKDQjNzdX06dP17HHHmsfo/r169spa3FxcYVu45dfftHQoUNVp04dez8tW7bUZZddVugYM02xR48e9vbNVLfOnTvbqW5l1aB677337PXM7Zrbv+iii7Rz585ifwezfdSoUfb/zXN16623Kicn57BrUOW15d1339WDDz6oJk2a2N9/0KBBNlwqz99kcnKyXn311WL/Jlu3bq2bbrqpxOubKXnm/g+V9/dont/yPPbmOPM4GGYUVd6UUXP7R/I6+O6773TttdeqXr169jExkpKSdPPNN9s6Wma0mNl36qmnauXKlWU+TgAAAOXFCCoAQLWY3mc6/H369Cn3dUxoZGoBNW7cWLfffrsNlEwYYcKN999/3wZQBd1www2KiYnRlClTbKffhDam3tWcOXPyj3nrrbc0btw4GxaYUVtmapWZWjhgwACtWrXKduDLYjr7Bw4cKLK9du3aNiC49NJL7ZRFE5aZEMCEbr/99psNHy6//HIbMBX05ptv2ts0o3bS09NtIHTKKafY65iwKU92drZtt2mrCbVM/S7DhFEmnDD3a0I+MzLo2Weftb+PCe0CAgK0b98+DRkyxAYh5rGMjo62j5FpZ56vvvpKF1xwgQ14zGNj/PHHH/Y2Sgtq8u7bTHucOnWq9u7da38Hcz3TBnNfeUwQZX4H83dgfoevv/5a06ZNU6tWrXTNNdfoSDz88MN2ZJcJuhISEmzwZMK7ZcuWlXq9Tz75xNad6tevnypTWY+92W7+Bs3vb/6mzz77bLv9uOOOO6LXgQmnzG1OnjzZhsLG1Vdfrblz59rXg6n5dvDgQTuN0Ty/3bt3r9TfHwAAeBEPAABVWEJCgsd8XI0aNarIvri4OM/+/fvzL6mpqfn7Bg0a5OncubMnPT09f1tubq6nX79+njZt2uRve/311+3tDx482O7Pc8stt3j8/Pw88fHx9uekpCRPdHS0Z/z48YXasGfPHk9UVFSR7YdatGiRvZ+SLrt3784/1vx/rVq1PKeeeqonIyPD061bN0+zZs3sY5Fny5Yt9nohISGev//+O3/7smXL7HbT/jzjxo2z226//fZCbVqyZInd/s477xTa/vnnnxfaPm/ePPvzzz//XOLvd9NNN3kiIyM92dnZZT4G5l8jMzPTU69ePU+nTp08aWlp+cfNnz/fHjd58uQiv8N9991X6DbNY9OjRw9PWQYOHGgvh7alQ4cO9jHO89RTT9ntv/32W5l/k2eeeaanvJo3b25/hzxTpkyxt3GovL9H8/yW97E3f/vmGHObhzrc18GAAQOKPIfm7/u6664r9+8KAABwJJjiBwCo0hITE+2/ZkrXocyULTPaI+8yY8YMuz02NtbWBTrvvPPyRyyZixn5YUbgbNy4scgUsiuvvLLQlCszjc+M2Nm2bVv+CKH4+Hg7Sijv9szFz8/PjuhZtGhRuX4fMzLF3NahFzP9Kk+DBg3s72K2m3asXr3aTvkz0+YOZUbCmNExeXr37m3bkzcVsKBDRxmZqXVRUVF2pFbB38lMtzOPd97vlDeKyYxky8rKKvb3MseYETemzeVlpq6ZEUJm1E7B2lRm2mT79u2LreFkRvMUZB6fv/76S0fKjN4qWJ/K3J5R2m3m/U2aqYyVrTyPfUmO5HUwfvx4+zd9aBvMiLJdu3ZVwG8EAABQPKb4AQCqtLwQwNT7OdSLL75oO95mWpipW5TH1BDyeDy6++677aU4JhgpGOw0a9as0H4z3c/Iq8VkOvOGmT5XnOLCo+KYukyDBw8u8zhTgPvtt9+2IY0Jz8zUueK0adOmyLa2bdvaaVyH1unKqymUx/xOZlqbqSlU0mNkmLpW//rXv+w0Q1PvygSDJhi78MILbU0iw4RM5j6HDx9uH1czLc0EI8OGDSvxd8wL/9q1a1dknwmozDSygkyIlVdvqeDzdGi9rMNR1vNe2nNt/vYqW3ke+5IcyevA1Lc6lJn2aKa2mummJrw000zNqoVmiiMAAEBFIaACAFRpZoSPKUJ9aOFvI68mVcGC0nmFvw1TV8iMFCmOqWlV0KGjRvKYDn7B2zR1qMwIp0OZAKgimVEuZoSRsW7dOnv/R7NKoQkzDr2+uU0TTr3zzjvFXicvDDIjy0wNop9++snWXvriiy9skW5T/8lsM6OtzO2YkV5mnykkby6m4LsJMmbOnKmKUNJzVBm3mfe8lxRQNWrUqNi/yfIqrkC6cWjB9/I89iU5kteBKcJ+KBM0mpFl8+bN05dffqnHHnvM1hkzdbBMIAkAAFARCKgAAFWemfL1yiuvaPny5XYKW1nyRnaYAt/lGa1UHqYQt2GCmIq6zdKYoudmhI4pHD5p0iRbtN0UTj9U3siugv78889yFWw3v5MpNG6KaBcXTBzq+OOPtxez6t2sWbNsMXGzct8VV1xh95upcqeffrq9mHDEjKoyo9zM6J1DgxDDrDxobNiwocjINLMtb39VdNppp+mll17S0qVL1bdv38O+ft5ILTNttGAh+LxRZYfz2JcUdlXk68CExOb5NBcz6soURzdtIaACAAAVhRpUAIAq77bbbrOrzpmRI2Y6X1mjXUyIZKZCmXBk9+7dRY7fv3//YbfBjEAxI2ceeuihYmsBHcltlsSMmDGrB5oV5szKa2a631133WWDp0N9+OGHheoImRDP1AsqT3BgRsaYETv3339/kX1m1T8TnuRNdzv0Me7atav9NyMjI3/EV0FmtFbeSnJ5xxyqZ8+e9rl64YUXCh1jRl+ZFeJMMFmV/ybNingmICrub3Lz5s12NcKyAs/FixfnbzM1vA4dbVaexz5vRca856siXwfm78NMAz30ds0IspKeVwAAgCPBCCoAQJVn6iyZUSOmQLmpV2RGj3Tp0sV23Lds2WL3mUCkYI0lU2R8wIABtuaTKfxsRpOYIMGMePn777+1Zs2aw2qDCaeef/55XXzxxXb0iAmNzBS47du32zpRZhTSs88+W+btLFmyROnp6UW2mzDHXMzoFFPM/OSTT9b1119v95nbNQXLL7nkEluXqeBUPTMyyfye5jomMDAjrWrXrm0DlPLUN7rqqqvsKC0zPc/UjTKjbcyoLFNA3QQs55xzjg1NnnvuOZ111lk2WDEju15++WX7mJh6RIYJakxRbjMSyjwPZiTQM888Y8OUDh06FHv/5r7MVDFTqNy0xTy/5jky92tGgN1yyy2qqszjYP7uRo8ebX8/M5WxU6dOyszM1I8//mgfP/N8lcQ81qb+1eWXX66JEyfaqYamEH7e31Se8jz2ZvRbx44dbahp6o+ZgvumLeZytK8Dc3/m+TR/B+Y1Z6YUmlF3P//8s51mCAAAUGGOaO0/AABcsGnTJs8111zjad26tSc4ONgTEhLiad++vefqq6/2rF69usjxmzdv9owdO9bToEEDT0BAgKdx48ae0047zTN37tz8Y15//XUzPMXz888/F7ruokWL7Hbz76Hbhw4d6omKirJtaNWqleeSSy7x/PLLL6W2Pe/2SrpMmTLFHnf22Wd7IiIiPFu3bi10/Y8++sge98gjj9ift2zZYn9+7LHHPNOmTfM0bdrUExQU5DnhhBM8a9asKXTdcePGecLCwkps20svveTp0aOHfTzNfXfu3Nlz2223eXbt2mX3r1y50nPBBRd4mjVrZu+jXr169nEs+Dubx3TIkCF2X2BgoD32qquu8uzevbvMx3TOnDmebt262duuVauWZ8yYMZ6///67XL+DedzK83Vm4MCB9nJoW957771Cx+U9rubvojz+/PNPz/jx4z0tWrSwv7d5/Pr37+955plnPOnp6fnHNW/e3P4OBa1YscLTp0+f/MfriSeeyP97NO0o72Nv/Pjjj/Y5NLdV8O/paF8HGRkZnokTJ3q6dOlifzfzHJj/f+6558r1+AAAAJSXj/lPxcVdAADACaYwvFlxzRSsNkWwAQAAgOqMGlQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFdRgwoAAAAAAACuYgQVAAAAAAAAXEVABQAAAAAAAFf5qxrLzc3Vrl27FBERIR8fH7ebAwAAAABAjWEqAiUlJalRo0by9WV8CypXtQ6oTDjVtGlTt5sBAAAAAECNtWPHDjVp0sTtZqCGq9YBlRk5lfdiiYyMdLs5AAAAAADUGImJiXZQSF7fG6hM1TqgypvWZ8IpAioAAAAAACoeJXXgBCaRAgAAAAAAwFUEVAAAAAAAAHAVARUAAAAAAABcRUAFAAAAAAAAVxFQAQAAAAAAwFUEVAAAAAAAAHAVARUAAAAAAABcRUAFAAAAAAAAVxFQAQAAAAAAwFUEVAAAAAAAAHAVARUAAAAAAABcRUAFAAAAAAAAVxFQAQAAAAAAwFUEVAAAAAAAAHAVARUAAAAAAABcRUAFAAAAAAAAVxFQAQAAAAAAwFX+7t49AAAAAKCiJSWmKSsrRz5mVIKvjyKjQ+XjY34CgKqJgAoAAKAc4mNTFB+brO+//l2J8amKrhWmAYOPVVR0mKJqhbndPABQTk6OkhLS9NfGvZr92hJt33pAuTm5qlM/UqPO76Ne/dsoJDRQwcGBbjcVAIrw8Xg8HlVTiYmJioqKUkJCgiIjI91uDgAAqIFSUzK0ef0uzXhovrZu3Ftkf6v2DXX9naerRZsGtuMHAG7IyMjS9r/2a/LNsxR7MLnYY4KCA3TTnaerz4C2Co8IdryNqH7oc8NJBFQOyUjPVGpCmvZu26fsrBw1alVfwaFBCo0MdbtpXiktOd1edv+1V2akc8Nj6iskIsQ+J3BeSkKq0lMytPuvPQoIClD95nUVGhWqwKAAt5vmlZJik5WWkq49W/YpLDJUtRvFKLxWmPz9GXTrhoQDiUpNTNP+vw8qqk6EoupEKrJOhHx9KSPphLTUTC1fvEEP/+ddlfaVydfPV5OfvFDdjm9lO4BwaKTIwWTF7Uuw71v1mtVRaESIImtHuN00r5Sdma2k+BQd3Blrv2M1aFlPIWFBCo8Jd7tpXvN62PznXk247FU7ra8sN995ugYO6aTQML77OsF8r0pPSteugn2P8BAFV4PHvzr1uVH9VYmAasaMGXrssce0Z88edenSRc8884x69+5dY14sibHJWvDSV/rv1HlKTUqz2/wD/DX4ohN0xcMXKapu1W17TZRwMElv3/eePn3pa2VlZNltJpgadeMInfvv0/li67D4/Yl67qbX9N17S+0QdCM8Okzj7hutQWNOUARfbB11cFesHrt0hlZ89Wv+tloNonX9M5er++DjFBZFqO6U3Nxc7dm6X1MvnK71yzflbzdfam9743q17t5CwaGc/a5sO7cd0PhRT+e/P5XG399Pr3xysxo0jnGkbd4sLTnNvi6mXf689m7bn7/92P7tNemtG1SveV1q7TgoOT5Fyz5dqRcmvGE/1w3z+PcZ2V23vHS1/RxB5TLTj8ef+5wSE1LLdbx5fl6fd4MaNqlV6W3zdokHkzTroQ/0yfNfKjM9024LCgnUqBuG67yJZ1b5vkd16XOjZnD99OucOXM0YcIETZkyRStXrrQB1dChQ7Vv3z7VlLT84xmf69U7ZuWHU0Z2VrY+f32RHr3kWRuYwBlJccn2y9OHz3yWH04Z6akZmv3wPL1173t2NA+cGxlyz9mPadHsHwp1/swX3Rk3vqav31qc/0GOymc6Ff8++Z5C4ZQRuyde9507TWt/WF/qCBJUrPh9Cbqp7x2FwinDjPy89ZR7tGvjHtfa5i3SUjP035e/K1c4ZWRn5+iDN39QRvr/Pl9QObb9/rduH/JAoXDK+P2H9bppwN35IQmcGbmz4ss1evjipws97ubz4qf5K/SfU+9TAs9Hpfvj17/LHU7lPT8f/Pcn3q8qWXJcsl6a+Kbef3J+oe+0GWmZmvPoR3rj7tlKTkhxtY1AVeJ6QPXEE09o/PjxuvTSS9WxY0e98MILCg0N1WuvvaaaID053QYfJVn+2SrbCYEzzDQZE3qU5OPnv7ChIpxhppCZzkRJZk6Zo5TE/wW7qFxrFq3Vzo27S9z/woSZdDIcYk5iLHh5YYmd7JzsHL1w65s2dEflSU/L0nef/3ZY1/nyw5W2ZhUqT8KBJD13yxt2lGFJI0EXzVpS7mARR8dMs3zx1jdL3L/19x3a8EvhoB0VKyE+Vf99fclhX+/Lj1fzflXJzACFL2d+V+J+M6PDTP0DUAUCqszMTK1YsUKDBw/O32Zqapifly5dWuT4jIwMO8Sw4KWq27xmm03IS/P1WyW/aaFi/fjRz6XuN19mTScdlc881gte/rrUY8xotj1bihYkRsUzo9YWvLKw1GP+/nMXI9ocYurplPXZsPqbtcrKyHasTd4o2SzRnnl4j3F6WiYjEipZdmaW/vjpz1KPMR1CM60GlS85IdXWyCuN6YSbaZmovO9UWzcf/uwT836VeZjvcTg8P81fWerocxO0r1x4eCdCgJrM1YDqwIEDdlhw/fr1C203P5t6VIeaOnWqnf+ad2natKmquswywikjjdTcMWYqX5nHcCbJsS9TZYW3RmYaHT0n5OZ6yhU+ZWcxIsERHimzjJDDfOFlhEjlyjnCx7ekkT2oGOX5uzefL8xIdq44enm+D/N+VYl8yve6KBavk0qVUa6+B31BoMpM8TsckyZNssXZ8i47duxQVXdMl+ZlHtN7RHdH2gKp2ymdyjzm2H7tHGmLt/MP9Ffv4d1KPcaMqGzcpqFjbfJmoRHBZb4+zKqjISxJ7YigsCAdO6B9qceYYul+AX6OtckbhUeEHPZ1TOHh4ODASmkP/uEfGKDajUov7Nz5hA4KCef9yglmddHAMv7mu596nF2xDJXEI9WqE3FE71cBgXyOVKbjTjq2zGM6DejgSFuA6sDVgKpOnTry8/PT3r2Fp/CYnxs0aFDk+KCgILtyQMFLVWc6dN0GdS5xf+2GMWrb4xhH2+TNzJLHTdo2KnF/m+7HKLo+K804pdug40pdpa//qF7VYvndmsCsLDr8isEKCAoo8Zgzrh2qsEg6GE4IjQjRmDv/VeoqZGPu+pftGKLymI5bh+MOb7R2197H0OGrZJG1wzX6P2eWenJj9H9G8fnhkJCIEA277OQS95vVyk658AT5+lWr8+LVSkRUiEac3eOwr9etd0sFBPpXSpvwj/rN6qhZ+8Yl7j/muOaq1ZC+B5DH1U+KwMBA9ejRQwsXLiw0LN783LdvX9UEkbXCdftbN9o3n0NF14vSY4vuUSQdDMdE143S1M/vVL1mdYrsa9y6ge778DZF1636wWdNEVknXNO+u7fYkKp979a68bnxCo8Oc6Vt3si8Fz204I5iz4T3O7OXzplweplnyVFxzPvUbTOvL7ZTd+b1w9XvjF62I47KExUTpguvLrnjXRxzfERUaKW1CZKfv58GXXiChl56crH77ppzi2o1oMPnlODQII295zz1OLVL0X1hwXr068k2VETl8ff306mndT3sEHDM+IGK4MRTpTL9vYc+u1MNWtQrsq9RqwZ64JPbbf8EwD98PC6vGT5nzhyNGzdOL774onr37q3p06fr3Xff1fr164vUpjqUKZJualGZ6X5VfTSVWflq+/qd+uzVhcrOylH/Ub3VZWBH2yGkg+E8szLWH8v+1Lezf/inMP9FJ6pVt5aEUy4wdegSDyRr5ddrtOzTlQoMCdTI8YPVqHUDRdXh+XCaqUNlCqYveX+Z1n7/hw0PT79miJ1OE1mbMN1ppqhwSkKavnrzO21es1V1m9TWaVefap+L0kYfouIkxqfqmQc+1pIvy15A49Qzu2n8rcMVSUDl2GIC5vP8kxe+VOzuOLXt2UqDLhyg0KhQhYQxvc9ppij9vh0HNP+FL+0iJ91O6ay+Z/RUeEyYAgJLHp2LipGakq5P3vtZrz1b+oIneXr3b6Nb7z1LUdG8XznBvFdt+HmTvpm1xI6OHnTRif/M3KgGfY/q1OdG9ed6QGU8++yzeuyxx2xh9K5du+rpp59Wnz59auSLxSwdbooRB5YyjQbOMasz+fx/PSS4LysjSz6+vvKnrk6VYIp0+wX42qnYcJf5qM7MyFJAgD/TZFwKqV5/6kt99v4vxe43nY0zLzxeF151siLp7DnOFIc2J/8CgvxLnRYL50485WTlKjCY77pOS0pM0wfvLNWsVxeXelzPfq11mwmnYhil7rTq2Peojn1uVF9VIqA6UrxYAACAE5IT05SakqFP5izTD1+vU2pyusIigjVwaGcNP6eXQsICj6ioOgBUpOSkNO3bnaBZry3Wj4vWF1qNtFPXZrrwihPVun0jRk6h3Ohzw0kEVAAAAOWUmZmllKQMO6rNjNYJjwimyDCAKjnlLz0tS2mpmXb2RmhYoB2FyyhPHC763HAS36gAAADKKTAwQIG1mboEoGoLDQu2FwCoTihkAQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFf5u3v3AAAA1UNGepZSUzMVezBZaWmZCg0NVK3a4QoJDVRQUIDbzQMAAKjWCKgAAADKCKZiY1M0d9ZSfbngV6WnZ+XvM+HUsNO66F/nH6/omFCCKgAAgCPk4/F4PKqmEhMTFRUVpYSEBEVGRrrdHAAAUMOkpWZo1S9bdd+d7ysnJ7fE4wIC/XTvw+epc5emCg4JdLSNAABUFvrccBIjqBySFJes1KQ0rfhyjbIzstXl5GMVXS9KUXV4kbsh8WCSEmOTterrX+Xj66Pug7soPDpUkbUj3G6aV4rfn6jY3XH6bckfCgoJVI9Tj1NIRIjCo8PcbprXyc3NVcKBJO3+a682LN9oXxPdTums4PBghUaEuN08r5Odla2kuBRt/W27tv6+XbUb11bnAe3t6yM4NMjt5tV4OTk5Wr9ul+69Y65yc0s/n5eVmaO7Js7WE8+NVYdjm8jX18exdnqr9JR0pSWl69fF6xS7J06turRUsw6NFVE7XH5+fm43z+ukJKTa52Tlwt+UEp+qDn3bqn6zOvb7Ltzpe6QlpemXL9coy/Q9TjpWMabvUZe+hxsSDiYpOS5ZK7/6VfLxsd91zfdc+h5AFQqoFi9erMcee0wrVqzQ7t27NW/ePI0aNUo1TcKBRD130+v65r/fF9revndr3TPvNtVuGONa27xR3N4ETR0zXau+WVtoe5+R3XXra9cqui5fpJy0f8dB3X3Gw9q8Zmv+Nh8fHw2/YpAuf+hCPrgd7ozv2rRXdwx/UHu27svf7ufvpzF3/Uujrh+uiFrhrrbRm2RmZGrz6m2afMbDNsTNY0LcG569Qv3P7q3wKELcypSYkK5H7vu4zHAqT26Oxx7/9EuXKDqG56YyJcenaOE7S/TSxLeUmZ6Zv918p3pg/iQ179RUAQGch3VKUmyy5jz6od6b9olyC4w0bNymoR5acIcaHlPffrbDGeZE0/O3vK5vZn2vgpNl2vVqrXvnTVTtRrVcbZ+3id+XoKkXPa2VX/9aaHvv4V018Y3r6XsAVWUVv5SUFHXp0kUzZsxQTT6b9PJ/3i4SThnrl2+yHcGCHQ9U/tmLB0Y/USScMpZ9ulJPjH9BSbFJrrTNWz+wJw66p1A4ZZgvUwte/lqzHvpAaSnprrXP2yQeSNLNA+4qFE4ZOdk5evOed/Xdez8qOzvbtfZ5m7g9Cbr15HuKfEZkpGXq8cuf058/b3atbd5i25b9Onjg8D4Tdu+M0949CZXWJvzzGbHm29/17A2vFgqnjIO74zRh4GQl8N3KMVmZWfrs1YWa8+hHhcIpY+fG3brlhLt5PhyUkpiq1+6YZQPcQyu5bPh5k24f9iDPh8N9jwcvmF4knDKWf7Zaj106Q4n0PYCqEVANHz5cDzzwgM466yzVVGao81dvflfi/r9+3aY9W/Y62iZvlrAvwU4FKMnSj39RSmKao23yZptXb9XOTXtK3P/xc18oPZmAyqnRU4vn/mSnv5bk7fvmKjk2xdF2eauMtAzNnfZJkc53Qa/c/o4doYvKkZKcrvdmLT2i6777zlKlpZb83OHomM616YCXJC05XZ88/6UNTlD5kuNTNfvhD0vcH7snXj9/sbpIWILKkZ6SoS/eWFTi/q1rt2vnpt2OtsmbJR5I1OpFRU+M51m+YJWdEgugCgRUhysjI8MWaSt4qeo2rtpS5GzSoRbN/sGx9ng7M0qqLKu/+c2Rtng7Mypn4awlpR6TlZGlv//kS5QTUhPStHhu6Z1xMzLBfPFF5UtJSNPST34p9ZiNK/9SdmaOY23yNplZOdqz+8hGQu3dnaDMTEYbVpaszGxtX7+z1GO+/2CZDU7gzPQ+U++oNN/O/sHWQ0Ll+2vNVvsdqzRm6h+csfyzVWUeU9zoKsBbVauAaurUqXYFgbxL06ZNVeWV42yRp5y1LXD0OHtX/Z4PnjMHleOh9pTnIBw9n3K+Png+Ks9RPLTmeeG5gdco52c5rwhnlOdrE9+tHMTzAdTcgGrSpEl2ecu8y44dO1TVte52jHx9S3+YTzq/v2Pt8XamEHpZupzcyZG2eDtTePuUCwaUekxAUICatG3kWJu8WWhUiE741/GlHhNTP1ohYcGOtcmbhUWG6PjTepR6TOtuLeVPEehKExDop/oNjqxwbYMGUQoK5LmpLAGB/mrarvTPhn5n9lJYVKhjbfJmEbUjylx196TR/VkJ1iGtujSXr1/pfY+Ty/j+hYrTa3i3Mo/pPvg4R9oCVAfVKqAKCgpSZGRkoUtVFxwepEEXnVDi/hadmqlRqwaOtsmbRdeL1rH925caYIVF8oXWKW26H2NX9inJyCsHKyScQMQJZkn2E8/tW+oqfWYlv/BarEzmhKCQIJ038Uwb0pbk8qkXKprlwitNeHiwzhvT94iue+6FfRUSGlThbcI/oupG6tIHLyxxf3BYsM68dqgCS3n9oOKYIHD0bWeWenLDdNJZxc8Z5u//1LEDS9zfrEMTNWnb0NE2ebOoOhE6bmDHEvf3HNqlzIAX8CbVKqCqjswS4Fc9PlYnnlN0ZELbHsfo4c/vpIPh8IfElLm3qvMJHYrs6zWsq2599VpF1o5wpW3eKLpelB5fdI8NagsyX2KHXnKSLp58LgGVg6LqRmj6kvtVt2mdQtvNmdgxd/7Ljnjz92dUiFNi6kfpsW+mFHlPCgwO1C0vXqX2fdq41jZv0bxlXdWuU3JoW5wGjaJVv1F0pbUJ/3xGdDulk6558hI7murQz5Vpi+6x/8IZJggcceWpOmfCaUVmDZiTUE8uud9+/4JzgeH4Ry7SSaP7FTvy9pEv71Z0XV4fTomqE6m7Zk9Ql5OOLbKv55Dj9J+ZN9D3AArw8bg46TU5OVmbNm2y/9+tWzc98cQTOvnkk1WrVi01a1a4w1ocUyTd1KIy0/2q+miqxNhkpSam2pUazKoyZihnrfrR9iwgnGdWvjKrlf3y+Wr5+Pmq97BuCo8J4wPCJfH7EnRgZ6xdNjwoNFC9R3RXaHiwwmMOr2OIo5ebm6uEA0na+edurV++0Y6o6jmki4LDgxld6IKsrGylxKVo0+ot2vLrdtVpWltdTzrWBrfmLDkqV3Z2jtas2qZJN88qV10XXz8fTXt2rDp2biJfX0aLVLa05DSlJWfYxU0O7opTq24tdUznZvZ9y0wjh7NSElLtCopmxb6U+BQd26+dDajMd11GTznPFK5PTUi1Rboz07PUbXBn1WoQTTjlEvPdyvY9vlhlUnbb9zDvVdWh71Gd+tyo/lwNqL799lsbSB1q3LhxeuONN8q8Pi8WAABQmVJTMrRi+V96cPI85ZSyKm9AgJ+mTD1Xx3VrppCQQEfbCABAZaHPDa8JqI4WLxYAAFDZ0tMzFXswRXPe/lELP/9NGRnZ+fuCQwI0ZMRxtu5UTK0wBVH3CABQg9DnhpMIqAAAAMohPS1TaWmZOrA/SWmpmQoJDVSdupH23+BggikAQM1DnxtOototAABAOQSHBNpLTCmrXQIAAODIsIofAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXOXv7t0DAABUfZ7cRMmTKSlb8iRLnmzJJ0DyCfvn65RPoHx8I91uJgAAQLVFQAUAAFAMT26G5EmSMn+SJ22ulPW75EkoeqBPjBRwrBR6nhTQS/IJl49vkBtNBgAAqLYIqAAAAArweDxSbqw8Ka9Kaf+VPCllXCFOyvxenszvJZ8IKfRie/Hxq+1UkwEAAKo9alABAAD8P09ukpS1Sp6Do6TUV8oOp4rcQJKU8pw8sefIk/WbPLnJldVUAACAGoWACgAAwIZTCfKkviNP7PlS7t6ju7GcnfIc/JeU9v4/9asAAABQKqb4AQAAr2dCJE/KG1LKjIq93aQHJU+WrU9FEXUAAICSMYIKAAB4NY9ZnS9jcYWHU/mSH5Uyf5HHBFUAAAAoFgEVAADwbrkH5Um8q1LvwpNwm5QbV6n3AQAFJSenKy42RbGxKUpISHO7OQBQJqb4AQAAr+XJjZMnYZLkSa3kO0qUJ/FeKfIh+fhFVe59AfBaOTk5SkxM19atBzRn9k/avSdeuTkexcSE6owzu6tHj5YKDQ1UUFCA200FgCIIqAAAgPfKjZUyf3TmvjK+kjy3SyKgAlDxUlIy9Oua7Xryyc918GDhFUR37YrT77/vVEhIoM6/4HidcUZ3RUaGuNZWACgOU/xcOKuRnZXjdjPw/3Kyc+wFVUN2VrZyc3Ldbgb+X1ZmtnJzeT6qCp6PiufJTZUn+RVn7zP1TXly0x29z5rOvC7M6wNV5/nI5vlwJZz6dtEfuuuuuUXCqYLS0jL1+muL9dyMr5WYyLQ/p9H3AKrwCKqpU6fqgw8+0Pr16xUSEqJ+/frpkUceUbt27VTTJOxP1I4/d+nLNxbZL1H9R/VWp/7tFVU3Uj4+Pm43z+vE70vQnyv+0rdzfrCP/+CLT1TLzs0UXZez2q4MRT+YrDWL1mrZpysVFBKoYVcMUsOW9RRVhxWvnJaZkaWUuBT9+PHP+nXxOkXUCtdpVw1RrQbRiqwd4XbzvE56SrpSElK1cNb32rx6i+o2rq0RV56qyFphCo8Jd7t51Z+Z1pf+ibP3mTZXCrtKUrCz91sDJcUlK+FAkj598SvF7olTu16tNfC8fgqLClVwaJDbzfM6iQeTdGBnrD596WulJKSo2ymd1HtEd4XXCldAAJM2KtvWrfv15JOflfv4r75aq+bN6+hf5/RUYCDT/Spb/P4EbVy5RYv++73tewwac4KO6dJC0XX5rgsU5OPxeDxyybBhw3T++eerV69eys7O1h133KG1a9dq3bp1CgsLK/P6iYmJioqKUkJCgiIjq+6LO25vvO4Y8ZA2rdpSaLvp8D2x+D41atWAkMpBe7ft160n36M9W/cV2t60XSM9+vUU1Wlcy7W2eWM4tWP9Lv37pCn2i21Bx/Zrp3s+mKjoeoSGTslMz9T65Zt0x/AHlZGWWWjfCWf30c0vXkVI5aDUpDQt+3SFHr74mSIjC8++eaQuuvscRRBSHRVP9mZ5Dgx3/H596iyUj39Tx++3JkmMTdJrd8yyYUhB/gH+uvu9Ceo+qLOCwwgBnZJwIFGPXjJDyxesLLQ9JDxYj349Wa27tpR/ICFVZUlISNXdd821U/gOR1hYkGa+eZViYsrud+HI7dtxwPY9dv+1t9D2xm0a6vFvTN+jtqqy6tLnRs3g6hS/zz//XJdccomOPfZYdenSRW+88Ya2b9+uFStWqKZIik3So+OeLRJOGbF74u2blRldBedGTpnO96HhlLFjwy5NOetRxfN8OCbpYHKx4ZTx+48b9MwNryo5IcWVtnkjM5Jt0rCi4ZSx5INlev/J+TbEgjP2/31QU8c8Xey01w+mf6qfPlnBlL+jlfmbO/ebvcGd+60hzGvi29k/FAmn8qaK3/uvx+13LDgjPSVDb98/t0g4ZaQlp2vioPuK/ZxHxU7vO9xwKu96v/66o1LahP+NnDJ9j0PDKWPnxt26+4xH6HsAVbUGlUlljVq1as4IltTENP3y5ZoS95uh0MWFV6gce7bt1/b1JX+A//nLZiXs/+fvEJVv1TdrS/3S+v37y5SenOFom7yV6dR99urCUgOoj2Z8rhSWqXZs9NSsB99XaYOc33lgrhIP0Ok7Uuax9WStcue+s1a7cr81abTOf6fOKzXAevexj5SeyueHE9KS0/TZKwtLnar8zewfqDFZiRZ9s+6Irzv/k1VKSuKzvbLs33FQ29b9XeJ+0w+M2xPnaJuAqqzKBFTmLPDNN9+s/v37q1OnTsUek5GRYYcYFrxUdZt/3VbmMT/Nrzkjxqq6VQvLPlu+9vv1jrTF25lAxExfKut9wZxdQuVLTUrXyq9/LfUYUwvJnA1H5ctIydBvi/8o9Zidm/aw6MZRyZE8Lo3QzK3631+qMlOA25zgK82ab9cpLYn3KyeYOmDFjbwtaMUXq22QhcoJ2/ftO/L3lPj4FOUQHlaa1d+sLfOY35aU/nkPeJMqE1Bdd911tv7U7NmzSy2qbua/5l2aNq369RsCgsouOkiNBOcEhwSWeUwQhVUd4evrq8Dgsl8fAeU4BkfP19enXO9Xfv5V5mOjZvMp3+eHjy/1C4+OW4+fn0v3WzP4+pX9PmQ+Xyjv6Yzy1JYyn+U+vnx+VAZTx9bf/8jfU/z8zHV5sVQWs/hPmcfQ9wDyVYlPiuuvv17z58/XokWL1KRJkxKPmzRpkp0GmHfZsaPqz5lu3aWFAoNLf2M6deyJjrXH2/U9s1eZoUnXk4sfwYeK72CMuGJwqceERoaqYcv6jrXJm4VHh2n45aeUekzj1g3K9UULRy88JkyDLjqh1GPMe1VgOUIsFM/Hx1/yrevOnbt1vzUoEGnfu3Wpx5w67iS7CikqX3hUaJkLzIwYP1ihESGOtcnbtGpd74iv27hJjAIpYF9p+pzWo8y+R/fBxznWHqCq83V7SKoJp+bNm6dvvvlGLVu2LPX4oKAgu3JAwUtVFxwerPMmnlHi/p5Duii6frSjbfJmYZGhOuWCASXuP+2qUxUczlkMpzRsVV8d+7Ytcf/Ye85VWBRfaJ3SbVBnu6poSa6aNk6RdVjFzwkBgQE67cpTS1w10QS8V08bSwf8KPkE9nbnfoNKP1mC0kXVidQ1T15qO3bFMaskD7pwgPyOYlQJys+8D41/9OIS9zfr0ETte7dxtE3e5vjjWysg4Mj+3keP7qPQUE4+VZbQyBANvrjkwQjDrzjFrnYJoAoEVGZa39tvv61Zs2YpIiJCe/bssZe0tJozR9284Zx900hdct/oQlP5TOdi0EUn6va3blQUy7Y7+iXq2qcv0+nXDFFAgbNFZpTbubeeoXH3jVZ4FEvtOtnJuHfebTrxX8cX6miYkVNXPT5WQ8aeVOYIRFSc6LpRmrboniKjCKPrRurO/96s407sWGKHEBUvql6knl76kNp0P6bQ9vrN6+rRrybb5alxlAJc6jT7Vf0SBVVdi05N9eCCSUVG7nTo00ZP/fCgoutFudY2b2OCwN7Du2nia9cWCtXN1DNzIvaxryfbzxFUnuDgAJ10UvvDvl7jxjGqx3NTqSJiwnX1E5do1PXDC/U9zDT+f91ymi578EI7ih3AP3w8pS0RVMnMB1dxXn/9dV1yySVlXt8USTe1qMx0v6o+miojLUOpienauWm3crJy1KRtIztSx4zogfNMoU5T7PnvDbtsTQTT0QuNCKYemEuS41PsMtV//7nL1g1p2KqBwiJDCKdckhibZIsL79q8R2FRoarbtI4iYsLkH8AUADck7E9UckKq9m3br6i6kXZ0SETt8P+vG4Kj4ck5IM/BM6Xc/c7dqV8T+dR6Tz5+tZ27zxoqJydHSQeTdXB3nF3RskHLena0gjn5AedlZWYpJT5Ve7fttyuRNm7dUCERwbaDjspnCqVfdeVrSkxMK3ftyWlPXKhOnZra/4cTfY9/vusaTU1fMCJYIdWg71Gd+tyo/lwNqI4WLxYAAHCkPJ5seVJek5Ifd+w+fSLukUJHy8eHgBFAxTEr8e3YflC33PJOmSGVn5+v7p48Sj17tlQItSVRBvrccBJzNQAAgNcWSvcJGeXgqnqBUvCphFMAKpwJnZo2q62XXr5MI0Z2KbbwuRkp1adPK7340mXq1YtwCkDVwwgqAADgtTy5KfKkvCSlPF/5dxZ+q3xCL5aPL4s/AKg86emZSk3N0qpVW7Vt6wFlZ+eofoNo9evX2oZS4RTlxmGgzw0nUVAEAAB4LR/fMCl0nDzpn0s5WyrvjvzbySf0XMIpAJUuODjQXgYNOtbtpgDAYWGKHwAA8Go+frXkEz3DdOsq6Q7C5BP9rHx8Yyrn9gEAAGoAAioAAAD/ZvKp9cY/daIqkk+IfGq9Jfk1qtjbBQAAqGEIqAAAgNfz8QmU/I+VT+3Zkm+tirlR33ryqTVH8m8rH5+AirlNAACAGoqACgAAwNajCpL8O8in9idS8OlHd2PB58in9of/H06xUhYAAEBZCKgAAAD+n4+Pn3z86soncrJ8an8gBZ18GF+X/KSgU+VT+2P5RN4uH7868vHhqxYAAEB5sIofAADAIXx8oyRziXpM8qRKGUvlyVwqZf0m5e6WPFmSGRllakv5d5ZPUF8p8HjJJ1Q+vhFuNx8AAKDaIaACAAAogY9vpKRIKfQsKXiE5EmW5Cl4hOQTIR9fpvEBAAAcDQIqAACA8taokrkAAACgolEYAQAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKgIqAAAAAAAAuIqACgAAAAAAAK4ioAIAAAAAAICrCKgAAAAAAADgKn937x4AAKB6yMrOUVJKunJyPMr1eOTr4yM/Px9FhofI349zfgAAAEeDgAoAAKAUSanpSkvP0iffrtV7X61WfFJa/r5aUaEaPbS7RpzQUSFBAQoPDXK1rQBgxMenKi09U7FxKcrN9SgqMkQREcGKjAyRny+BOoCqycfj8XhUTSUmJioqKkoJCQmKjIx0uzkAAKCGiU9K1TP/XazPlvxhR02VxM/XR2ee3FlXndNfUREhjrYRAPLEJ6Rq1Zrtenv2Um3esr/Qvrp1wnXuWb006KQONrDy9/dzrZ2oPuhzw0kEVAAAAMWIT0zTbdM/1K9/7i73dXod20z3Xz9S0YRUABxkunT79idpwu2ztXN3fKnHhoYGatpD5+mYFnUVFBTgWBtRPdHnhpMY3+mg3NxcJR5MUsKBRGVlZrndHK+XnZ1tnwtzyc3Jdbs5Xi8zI8s+F+Y1Uo1z8xojIy1DCfsTlRSX7HZTICktOV3x+xOVkpDqdlO8RkJSmh565cvDCqeMn3/frulvL1JicnqltQ2FJcen2M+P9BQe86ogKTbZfn5kpGe63RSvcuBgsq6b8HaZ4ZSRmpqpGyf+V9u2H1ROTo4j7cM/fY/Eg//0PXKyedyBKleD6vnnn7eXrVu32p+PPfZYTZ48WcOHD1dNYjrb8fsS9f28ZVr49mJlZ+Wo19AuGnHlqYqqG6lAzlw4KjvLBFNJ+vKNRfrxo5/l4+OjE8/tq1MuPEFRdSPk58dwZydlpGXaD+qPn/tCqxb+psDgAA295GQdf1oPRdeLcrt5Xic1KU1xe+I194lPtOHnzQqLCtUZ1w3VcSd0tO9XcFZSXIr27zig2Y98qL837FJ0vUid8+/T1apLS0XViXC7eTXa/vhkLV65+Yiu+/kP63X5WX0VGR5c4e3C/5jP8j9/2aQPpn9q/79Fp6Y6b+KZqtO4lsKjw9xuntcxIfrqb37T/Be/UlpSmjr2baezbx6pqHpRCuW1UKkSE9M0ddqnNqQqr6ysHE28+z298cJliuH1UqlMGGVC2y/f/E4/zFtm+x4nnHO8Bo05kb4HUJWm+H3yySf2BdmmTRsb4sycOVOPPfaYVq1aZcOqmjLccM/Wfbq5/106uDuu0PbA4EA9unCy2vY4RgGBhFROMGeJtq3doVtOnGw74gVF1ArXU98/oMZtG8qX4pGOhVO//7Bed46caoPDguo3r6snF9+nuk3ruNY+b5OSmKrv31+maVc8X2QUW6uuLTT187sUQ2joGDN67f0n5uudB98vsq/n0K66/a0bCakqSUpaph5+7St9tXTDEd/GWad01k1jTlIwJ6EqhTmxcd+50/Trd+uK7Lv8oQt12tVDCKkcFLsnXrcNvlfb1v1daLv5PjXpnRvVZ2R3hYQz7bWy7NmboPMvefGIrvvglLPU//g2Fd4m/K/vsX3dTt1y4t1FRkFHxIRr+vf3q0m7RlW671Fd+tyoGVx9JZx++ukaMWKEDajatm2rBx98UOHh4frpp59Uk84m3fuvx4uEU0ZmeqbuGPagkuOYsuGUxIPJun3Yg0XCqbwh6XeeNlWJB5JcaZs3SklI0V2nP1wknDL2btuvhy9+xk75gzPM2b3iwilj8+qteu2OWXaqGZyxY/3OYsMp45cvVuvz1xba6QKoeGkZWVq0fONR3caC7/9QajrT+StrSvgHTy0oNpwyXr1jlv0MgTNMp3vGTa8VCafyyltMHfO0kmJTXGmbN8jMzNYHH6844uu/+d+ltrA6KkfSwWRNGvZAsVP0zYmoScMftCNAAfzDtyqly7Nnz1ZKSor69u2rmiIpNkmbVm0pcb8JSlYv+s3RNnmzLb9uU9zekufm7/5rrx3xBmcseX+ZsjJK7sD9unhdsWEiKp4JzOc9vaDU+l8L31lCjRcHa+q8ff/cUo95/8lP7RdfVLx9B5OUfZS1CTMysxXP+1elSIlP0SfPfVHqMbMefF+piXS6nZCRmqHvP1hW4n4TUn360lfFnozC0UtOydAPPx3ZdGRjw597lEMt1kqzdd2OYgcq5Nm3/YB2b97jaJuAqsz1gOq3336zo6aCgoJ09dVXa968eerYsWOxx2ZkZNghhgUvVV1xZ5MOtfb79Y60BdL6ZWWfES8tUETFycrM1u8/lj19Zs8WAkMnpKdkaOOKv0o9xoSJaUkEVE7ITM/SX79uL/UYE7bnZNOpqAxJqRXzd56cllEht4Oinx9lLeCwec02O40clc+M/ihrsZkNP29Seiqvh8qSfJQnjwioKs+G5ZvKPGbjSvoeQJUJqNq1a6fVq1dr2bJluuaaazRu3DitW1f8kO2pU6fa+a95l6ZNm6qqM3WNyhJTn5ouTilP0e3I2tR0cYKfv6+iy1E/Jzw61JH2eDu/AD+Fx5RdryUwhHo6TvD19VFEGc+Hr5+v/Pxc/xivkYICK2YNmaAAV9eiqbH8A/xskeHSmPpT5jWCyhdSjgLo4THh8uf1UGXfs8p6PeHIRdWl7wEcDtc/uQMDA9W6dWv16NHDBlBdunTRU089VeyxkyZNssXZ8i47duxQVdesQxO7ClZpBl880LH2eLveI7qX+oU1IChAnQd0cLRN3soUgxx51ZBSj6nVIFq1G9d2rE3eLCwyVGfdMKLUY1jQwTkRtcN12lWnlnpM/1G9FRga6FibvEmd6LJPLpVHdARFoSuD+azuMaRLqcecef0wOn0OCQ4PUrP2jUs95qwbRyg4NMixNnmTgAA/NWt65N+VoiJDONlRiXoN7So//5JX6QsI9FeXk8peHAzwFlXu3cjMUzdT+YpjpgGalQMKXqq6sMgQXfvUpSXuP+3qU8sMsFBxQiKCdeEdZ5e4/7KHLlBwBEshOyWmQZROOr9/iftvfG58maNIUHFad2+pY/u3L3af+XJ14/PjFVW36r/v1gRmhduB5/VT4zYNi90fGhGi8Y9cZINFVLywkEC1anJ0K4h2at2wwkZiQUVWvrp2+iUlBh4tjm2q3sO6MSrEIVF1InXzS1eVeAKw26DOatK2+PcyHL2I8GBdNPr4I77+mad1U0Q44WFl9j3G3PWvEvePu2+0gssxChHwFq4GVGZE1OLFi7V161Zbi8r8/O2332rMmDGqKQKDA9XvjF66d95thToaZqrZVY+P1aUPXGC/aMEZpjN39k0jdfMLV6pO41r52+s3r6vb37pBQy85WSFhfEg4JbJWhG545nJdcv/5habDNu/YRA9/cZe6ntyJKQEOdzLu+WCifY0EF3gddOjTRk8vfVDNO1b9adU1ifmceOLbe3XqxSfaM6yG6XCbzt6MXx5RnaM4Y47SxUSG6pIzex/VbVw6qg8jqCpR/Rb1NOPnh3XcwI6FvnMNv3yQHv16MmG6g8z7UuuuLTV9yf1q0/2Y/O2hkaE6b+IZuvO/N9vPF1Se5s1qq07tw+9PmAz39OFdFMB3rUpjTiiNumG4Jrx8teo2+d/ndr1mdXTbG9drxPjBCiWgAvL5eEpbsqmSXX755Vq4cKF2795ta0odd9xx+s9//qNTTy19WkMeUyTdXM9M96vqo6nMw2yWcDeFbz25uQoMCVJErTA63y4xxTwTDiYp8/8LqAaFBNopNWbUApyXlZml5LhUZaRl2GHmAcEBii7HnH1UDvM8pCam2QLD5j0qIMifzoWL0pLTbBF783yYKZamDhgnNipfbEKqLrx95hGtxFe3Vrhm3n+RajFCutIlxibbBRzMxXyWm5EInGhyT8KBRGWlZyk7O8c+H2aWgAkOUfmrof+8cqtun/z+YV3vwvP66MLzjld4GCOoKlt17ntUpz43qj9XA6qjxYsFAABUhpzcXG3ZGavLJ89SRlZ2ua8XEhSgNx4Yo2YNYphiBsAxKakZ+nbJBj3+1OcqT+9uxJDOuvqKkxTJSE+UgT43vLoGFQAAgNv8fH3VrEG0Xr7nfEWWc0ROTGSIXr33AjWqE0U4BcBRYaFBOvnE9nrq0QvVrk2DEo9rUC9St908TFdfcTLhFIAqhxFUAAAAJcjJybXT/D5d8rvmfLFKB+NTip3Sd+HwHhrar72iI0Ll60s4BcA98QmpSkpK17xPVmr3ngQ7IjQmKlRnjuymhg2jFRkRzMp9KDf63HASARUAAEAZsnNylZScrq27Y/Xntn1KTE5XVHiw2resryb1YxRlOny+dPgAVK2APSMjy075Cwz0V0BA1a93hKqHPjecRIVuAACAMvj7+doRCObSrX0Tt5sDAGUyo6RCQymADqD64FQfAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXOXv7t0DAAAAAAC4x+PxKDs7Wzk5OW43pcbx8/OTv7+/fHx8yjyWgAoAAAAAAHilzMxM7d69W6mpqW43pcYKDQ1Vw4YNFRgYWOpxBFQAAAAAAMDr5ObmasuWLXaUT6NGjWyAUp6RPij/yDQTAO7fv98+zm3atJGvb8mVpgioAAAAAACA1zHhiQmpmjZtakf5oOKFhIQoICBA27Zts493cHBwicdSJB0AAAAAAHit0kb1wLnHl2cBAAAAAAAAriKgAgAAAAAA8CKXXHKJRo0apaqEgAoAAAAAAKCUMMcUTz/0MmzYMFVXTz31lN544w1VJRRJBwAAAAAAKIUJo15//fVC24KCgirt/jIzM+2qgpUlKipKVQ0jqAAAAAAAAEphwqgGDRoUusTExOjbb7+1QdKSJUvyj3300UdVr1497d271/580kkn6frrr7cXEwzVqVNHd999tzweT/51WrRoofvvv19jx45VZGSkrrzySrv9+++/1wknnGBXwzOrDd54441KSUnJv95zzz2nNm3a2NXx6tevr3POOSd/39y5c9W5c2d73dq1a2vw4MH51z10il9GRoa9bdNuc1sDBgzQzz//nL/f/J5m1NjChQvVs2dPu+phv379tGHDhgp7jAmoAAAAAAAAjoAJn26++WZdfPHFSkhI0KpVq2z49Morr9jAKM/MmTPl7++v5cuX2+l1TzzxhD2moMcff1xdunTJv43NmzfbkVv/+te/9Ouvv2rOnDk2sDJBl/HLL7/YUOm+++6zQdHnn3+uE0880e7bvXu3LrjgAl122WX6448/bMB09tlnFwrFCrrtttv0/vvv23auXLlSrVu31tChQxUbG1vouDvvvFPTpk2z921+H3P7FcXHU1LrqoHExESbPpo/ApMwAgAAAACAilHT+9zp6enasmWLWrZsaUcNlcSMNnr77beLHHPHHXfYi5mO16dPH7Vt21Zr165V//799dJLLxUKsfbt26fff//djkIybr/9dn388cdat25d/giqbt26ad68efnXu+KKK+Tn56cXX3wxf5sJqAYOHGhHQi1YsECXXnqp/v77b0VERBRqmwmZevTooa1bt6p58+bF/k7x8fH68MMP7W2Z0WCmJtWFF15o92dlZdk2mfBt4sSJNuA6+eST9fXXX2vQoEH2GHP/I0eOVFpaWqmPX3kfZ2pQAQAAAAAAlMKEM88//3yhbbVq1bL/mil+77zzjo477jgbBj355JNFrn/88cfnh1NG37597UiknJwcG0IZZupcQWvWrLEjp8xt5zFjjHJzc23gc+qpp9r7O+aYY+xIK3M566yz7PQ7MxLLBElmip8ZCTVkyBA7/c8EUYcyI7VMIGWCtTwBAQHq3bu3HX1VkPkd8zRs2ND+a8K3Zs2a6WgxxQ8AAAAAAKAUYWFhdtpbwUteQGX8+OOP9l8zJe7QaXGHcx8FJScn66qrrtLq1avzLya02rhxo1q1amVHTZmRUv/9739tWDR58mQbTJmRUSb0+uqrr/TZZ5+pY8eOeuaZZ9SuXTsbbB0NE1zlyQvcTGBWEQioAAAAAAAAjpAZgXTLLbfo5ZdftlP9xo0bVyS0WbZsWaGff/rpJ1vcPG/0VHG6d+9upwAeGoyZS94Kf6YOlCl+bgqzm9FWZkrfN998kx8gmVFR9957r61rZa5TcAphHhN2mX0//PBD/jYzosoUSTfhllOY4gcAAAAAAFAKs8rdnj17Cm0z4ZCZMnfRRRfZaXSmHpSZZmem1Znpe6Z2U57t27drwoQJdkSUGfVkRjSZY0rzn//8x04NNEXRTT0qM8LKBFZmZNSzzz6r+fPn66+//rKF0U07TE0oE4yZkVImEDMr7pmpfWZlPvPz/v371aFDhyL3Y273mmuuse01o8LMdD0TeKWmpuryyy+XUwioAAAAAAAASmFWyMuruZTHBEGmqPi2bdtsWGSYY0yBdLOCngmHzJQ7Y+zYsbaYuKnrZEZN3XTTTbryyitLvc/jjjtO3333nV0574QTTrD1p8xop9GjR9v90dHR+uCDD3TPPffYQuRmRJaZ7nfsscfa2lGLFy/W9OnTbbF7U6vKBGLDhw8v9r4efvhhG26Z1QiTkpJsPawvvvii2JpVlYVV/AAAAAAAgNf1ucu7utzRMqv4de3a1YZF3ii9nI8zNagAAAAAAADgKgIqAAAAAAAAuIoaVAAAAAAAAJXk22+/dbsJ1QIjqAAAAAAAAOAqAioAAAAAAAC4ioAKAAAAAAAAriKgAgAAAAAAgKsIqAAAAAAAAOAqAioAAAAAAAC4ioAKAAAAAAAAriKgAgAAAAAAOAo52TmK25ug+H0J9l/zsxNmzJihFi1aKDg4WH369NHy5ctLPf69995T+/bt7fGdO3fWggULCu33eDyaPHmyGjZsqJCQEA0ePFgbN24sdExsbKzGjBmjyMhIRUdH6/LLL1dycvJR/y4EVA5KT8lQ3N54xe2JV3JCitvN8Xopian2uYjdE6+05DS3m+P1kuKS7esjdm+8MtIy3G6O10s4mPTP+9XeeGVlZrndHK/3zxedf54Pp77soHi5ubmKy3s+9iXYL3FwT3Z2dv5rI35/otvN8XqZ6Zn2u5V5PhIPJrndHK9XqO8RT9/Dbamm72G+6+6JV2oSfY+aJmF/ouY9vUDX9b5d5zUcb/81P5vtlWnOnDmaMGGCpkyZopUrV6pLly4aOnSo9u3bV+zxP/74oy644AIbKK1atUqjRo2yl7Vr1+Yf8+ijj+rpp5/WCy+8oGXLliksLMzeZnp6ev4xJpz6/fff9dVXX2n+/PlavHixrrzyyqP+fXw8VeSb1cMPP6xJkybppptu0vTp08t1ncTEREVFRSkhIcEmd1WV6dzF7orTfx+epyXvL1N2Vo66nNRR4+4drYbH1FdoRIjbTfQq6Snp2rfjoGZOmaMVX66Rj4+Pjj+thy6afK7qNI5RUEiQ2030Kias3fnnbr15z7ta+/16BQYH6KTR/XXebWcqpn6U/AP83W6i1wWFf/68WW/dP1ebV29VWFSohl92sk6/dph9PszrBc4xHbyVC3/T7IfnaefGPYquF6kzrxumwRcPVHTdqvu5V1MlHEi0n+MfTJ+v/TsOqn6Lujpnwunqe0YvRdWJcLt5Xhncfv76Is1/4UslHEhSsw6NdcGks3TciR0VWZvnw/Hgdm+C7Yx9/eZ3tvPdpscxGjvlPLXq0kLhMWFuN9Gr2L7H7nj72bF47k/KzszWcQM7atx9//Q9wiJD3W6i1/U99v99UG/e+55+/myV/S7VZ2R3XWz6Hk1qVfm+R3Xpcx8pE7ps2bJFLVu2tCOKjoQJoSYNf1AbV/5VZF/bHsfowQV3Vtr3tj59+qhXr1569tln89+PmzZtqhtuuEG33357keNHjx6tlJQUGyrlOf7449W1a1cbSJl4qFGjRvr3v/+tW2+99Z/fLyFB9evX1xtvvKHzzz9ff/zxhzp27Kiff/5ZPXv2tMd8/vnnGjFihP7++297/SN9nKtEQGV+sfPOO8/+wZ988sk1KqDKycnRX2u2acKJk5WeWnhUiHlzuv2tG9TvzF4KDjuyFwMO/8ze6kVrdfcZjyg3J7fQPhOEPPLV3erQt60CCEUcYb7ALnxniZ6+9uUi+0IjQ/X0jw+oecemrrTNW8OpWQ++r7lP/O8DK0/thjF6+qeHVK9pHVfa5q3h1JNXvaDvPyg6TLtZhyZ6/Jt7bGgI58Kpu06bqvXLNxXZZzp+k9/7t6LqVM3vIjVR7O44TRg4WTs37Smyb/BFJ+qaJy8hpHLQni37dMPxk4odxXbxlHN19k0jFR5NSOUE0zn969dtumXA3cX2PSa+fp0GnN1HIeH0PZyQmZGlX7/7XXed9nCREdCm7zH18zt1bP92CggMUFVVHfrcbgZU5nk14fyLt75Z4jFXTRuns28cIV+/ip3AlpmZqdDQUM2dO9eOgsozbtw4xcfH66OPPipynWbNmtkRVzfffHP+NjP66sMPP9SaNWv0119/qVWrVnZ0lQmt8gwcOND+/NRTT+m1116zAVZcXFyhEc3m8TPTB88666wjfpxdn+Jn5ima4WEvv/yyYmJiVNMkHUzWfedOK/IBYZhs8LFLn1NqIkM8nZKSkKYHRj9ZJJwysrOydd8505QcyxBop6TEp+iZ614pcRj0A+dPZ8qGg8zZveLCKePg7jg9e/2rTBFw0LqlG4oNp4ztf/ytdx/70IbuqHzmy+dXb31XbDhl/PrdOv0wb7ntGMKZ0Qgz73m32HDK+Prtxfrrt22Ot8tbJcYmadoVz5f4ef3Wve/Z0W5wRuKBJN1/7hMl9j3Mc8X0MuekxKfq/vOeLHZ6vu17nDtNyfGprrQNFSPxYLI+eKpwDadDzXvqU3uiq6IdOHDADogxo5sKMj/v2VP8Z6TZXtrxef+WdUy9evUK7ff391etWrVKvN/ycj2guu666zRy5EhbeKsmOrAr1p5VKol5Y/rho58dbZM3+/2H9UpL/t/c2UOZN46tv293tE3eynxJ+vLN70qt37J17XYlxx19sT2UzXyRnTvtk1KPWfbpSgIRB0dPzX6k6Fmvgha88o1SEvhS64TE2GR98OSnpR7z3rRPbMcQlc98ji98e3Gpx8yeOs+OCkXly0zLsqPTS2M6b2YkCSqfqW+0a3PJHUQTlCx5/ydH2+TN/lj2pz3pWpKk2GRbUgHVl6l+sX/HgVKPMWUBKJNRDQKq2bNn20JeU6dOLdfxGRkZdohhwUtVV1o4lWfLr5zlc4oZdVCWv//c7UhbvF1WZra2rfu7XKN6UPky0zK1q4TRCHnM6JD0ZArYO8HUKizr88N84c3JZsSOU8p6LzLPl/tFE7zn8yMjLbPM58PU3UHlS4otO5jduXG3/ZxB5du7bX+Zx5gpgFWgyotX2LF+Z5nH/L1hlyNtQeUwL6W6ZZTAqNu0dqW85urUqSM/Pz/t3bu30Hbzc4MGDYq9jtle2vF5/5Z1zKFF2M0UP7OyX0n3W+UDqh07dtiC6O+8806553qaIMvMf827mOJfVV2dxrXKPKZx24aOtAVSg2MKD1UsTv3m1NhxQkCgvxq0KDw0tDi1GtS8qb9VUUBwQJnvV+bMT1BY1S7kWVP4+fuqdqPS//aDQgLtcXBGdL3S63398/qhw+cEU7elrAU0ajeuJb8AP8fa5M3KU1vK1C80nzOofHUald33aNKmIaM5HFKe77oNWtZ1pC2oHJG1w3X2TSNKPeasm0ZWSp3KwMBA9ejRQwsXLix0Qtn83Ldv32KvY7YXPN4wK/HlHW9qRJmQqeAxZmCQWc0v7xjzr6lxtWLFivxjvvnmG3vfpmj70XDtm635ZUzq1r17dztf0Vy+++47u5yh+X8zl/JQZpU/U5wt72JCrurwplS7lA8KUyht4Hn9HG2TN+t2SicFBgeWuN+sWNa2RytH2+StzBejkeMHlXpM4zYNWRnLISFhwTr31jNKPaaref0E0cFwgvkSc+6/Ty/1mFPHDlQIq8A6IiImTGdcO7TUY866cThF0h0SHBakE889vtRjRk88U5G1+PxwQmBIoDr0aVPqMWffMlJBpXz/QsUxIzXqNqld4n5fX1+dfMEAR9vkzcwiGsGhJZ/cM6u5t+td+usHVZufv59OvXigXa2vOGb7qRefWOEF0vOYguemnvfMmTPt6nrXXHONXaXv0ksvtfvHjh1rc5Q8ZpCQWXFv2rRpWr9+ve655x798ssvuv766/P7aKaA+gMPPKCPP/5Yv/32m70NszJfXiH2Dh06aNiwYRo/fryWL1+uH374wV7frPBX3Ap+1SKgGjRokP1lV69enX8xSxSagunm/81QtUMFBQXZlQMKXqq6iFrhmvT2jfYPtzhXPnYxq2g4yHTmbnnpqmL3mRfjbW9cr9AoOnxOCYsOs6v7FCcgKEC3v3WjoippSVYUZZaeNqtflXSG/OYXrrTvaXBGt0Gd1eWkjsXuM0PJL7r73FK/9KLimNE6p189xK6eWJxWXVrolDGV9+UTRTt0V0y9SLUaRBe7v9ewbnT4HGSC2Vtfv7bE77Mjrzq1XKN6UDEiaodr0js3lTjK8IpHxigsku+6TgmNDNEtL19d7L68VRV5Pqo/0195cMGddrW+es3q2OfW/Gt+fuizOyv1BNbo0aP1+OOPa/LkyXaVPZOlmAAqr8j59u3btXv3/0rY9OvXT7NmzdJLL72kLl262BUAzQp+nTp1yj/mtttu0w033KArr7xSvXr1sgvbmdssOPPNzIRr3769zXVGjBihAQMG2Ns8Wj6eKjQB+aSTTrIP6vTp02vUkpem+PDeLfv06h2zbJFhM/TNnGm65P7z1bZnK5bddVhKYqq2/b5Dr06apV8Xr7NvIKYjeMXDY9SkbUOFhPMh4SRTBH3tDxv05j3vauPKv2wHr/+o3rrswQvsG3tpI95QOcW5f/p0hf770Dz9/ecu+/ifcuEAXTz5XDvlrKSwHZXDLNxgViQzBewP7IxVaGSoRlxxih3txvRX58XtS9DHMz7Xx899YV8r0XUjNeqG4Rp51RD7/3CO+S4Vtydesx/5UF+8vsgWTq/fvK7Om3iGBp7Xn9G3DsvKytbBnbF6c8ocfTvnR1snrHnHJhpz17/Uc0hXTm640ffYtl+vTXpHP83/p+/Rvndr2/do16s1fQ8X+h7b/9ipVye9ozXf/m632b7H1DFq0q6RDd2rsurS5z5S6enp2rJli53aVt7SQyUxK8Wb726mf2liFhNMcfLq8B5nAioHmeXZszJMwU6PfP38+PJUBYp6mkLEko/8A/0UEcOXJzeZ5ak9Zol2Hx8FBgcoLDLU7SZ5LfOxkLA/Ubm5HvsBGxIepOAwRnq6xX7ZOZgkz/8/H2FRIQS3LsrKzFJyXKp9nfj4+tjpf2XVQ0LlyUjLUGpSun19+Jrno3Z4saPw4Yy05DSlp2bmPx9l1W5D5UpOSFFWel7fw5dpyC5LjE1STjXse1S3PrebARWO/nGuUt+ovv32W9VknK2oWiKoTVGlMPqg6jAhCJ2KqsN0KmJ4PqqMgMAAxdTn+agqgkKC7AVVgxmFzkj0qiM8Kkzi7arKoC4eUDbGmwEAAAAAAKB6BVRmdb3FixfbZQUBAAAAAAAAxwMqM69/yJAhiouLO+o7BwAAAAAAAI5oip9ZgvCvv/6q+NYAAAAAAADA6xxRQPXAAw/o1ltv1fz587V7925b2b/gBQAAAAAAACivI1rFb8SIEfbfM844w672lMcuuezjY+tUAQAAAAAA1HQJiWlKScnQps17lZySofCwILVuVV9hYUGKimR100oNqBYtWnQkVwMAAAAAAKgxwdSfG/do5js/aO26nUX2d+rYWOPG9Fe7Ng0USVBVOQHVwIEDj+RqAAAAAAAANSKcmj7jSy36bn2Jx5jQauKd7+rkge1187WnKioq1NE2ekUNKmPJkiW66KKL1K9fP+3c+U9S+NZbb+n777+vyPYBAAAAAABUrXDq2dLDqYLMcdOf+8per6LNmDFDLVq0UHBwsPr06aPly5eXevx7772n9u3b2+M7d+6sBQsWFNpvSjdNnjxZDRs2VEhIiAYPHqyNGzcWe1sZGRnq2rWrLfW0evVqdwKq999/X0OHDrWNXblypW2UkZCQoIceeuioGwUAAAAAAFAVmWl9ixaXL5wqGFKZ61WkOXPmaMKECZoyZYrNZrp06WKzmn379hV7/I8//qgLLrhAl19+uVatWqVRo0bZy9q1a/OPefTRR/X000/rhRde0LJlyxQWFmZvMz09vcjt3XbbbWrUqJH7q/iZxr788ssKCAjI396/f3/7oAAAAAAAANQ0CQmptubUkXhz1g8VOorqiSee0Pjx43XppZeqY8eONqcJDQ3Va6+9VuzxTz31lIYNG6aJEyeqQ4cOuv/++9W9e3c9++yz+aOnpk+frrvuuktnnnmmjjvuOL355pvatWuXPvzww0K39dlnn+nLL7/U448/7m5AtWHDBp144olFtkdFRSk+Pr4i2gUAAAAAAFClpKRmFlsQvTx++32nXe2vImRmZmrFihV2Cl4eX19f+/PSpUuLvY7ZXvB4w4yOyjt+y5Yt2rNnT6FjTM5jpg4WvM29e/faYMyUeTKBmKsBVYMGDbRp06Yi2039qWOOOaYi2gUAAAAAAFClbNq896iuv/mv4qffHa4DBw4oJydH9evXL7Td/GxCpuKY7aUdn/dvaceYUVaXXHKJrr76avXs2VMV6YgCKpOU3XTTTXY+oimGZYZ7vfPOO7r11lt1zTXXVGgDAQAAAAAAqoLkoxwBlZxStJZTdfLMM88oKSlJkyZNqvDb9j+SK91+++3Kzc3VoEGDlJqaaqf7BQUF2YDqhhtuqPBGAgAAAAAAuC08LOgorx9cIe2oU6eO/Pz87HS7gszPZtZbccz20o7P+9dsM6v4FTzGrNZnfPPNN3a6n8mACjKjqcaMGaOZM2c6O4LKjJq68847FRsba6u9//TTT9q/f78tsAUAAAAAAFATtW5VePrb4Wp1TL0KaUdgYKB69OihhQsX5m8zA4nMz3379i32OmZ7weONr776Kv/4li1b2pCq4DGJiYl29lzeMWaFvzVr1mj16tX2smDBgvwVBR988EHnR1Bddtlltvp7RESErRSfJyUlxY6gKqliPAAAAAAAQHUVFhakTh0bH1Gh9M7HNrbXrygTJkzQuHHj7Oil3r172xX4TC5jVvUzxo4dq8aNG2vq1Kn2Z1OqaeDAgZo2bZpGjhyp2bNn65dfftFLL72UPxjp5ptv1gMPPKA2bdrYwOruu+9Wo0aNNGrUKHtMs2bNCrUhPDzc/tuqVSs1adLkqH6fIxpBZYZspaUVXRrRbDNLEAIAAAAAANQ0UZEhGjem/xFdd+yF/e31K8ro0aP1+OOPa/LkyXYKnhnR9Pnnn+cXOd++fbt2796df3y/fv00a9YsG0h16dJFc+fO1YcffqhOnTrlH3PbbbfZgUdXXnmlevXqpeTkZHubwcEVMzWxND4eU4K9nMzQLnN4TEyMNm7cqLp16+bvM9XjP/nkE1ufyhRNd4Jpj1nyMCEhQZGRkY7cJwAAAAAA3qCm97nT09O1ZcsWO1LocAKYxMQ0PTnjSy36bn25r3PywPa65bohiqzAgKqmPc6HNcUvOjraDvkyl7Zt2xbZb7bfe++9R9ZiAAAAAACAKs6ETDdfN8T+f3lCKhNO3eyl4dThOKyAatGiRXYE1SmnnKL3339ftWrVKlSgq3nz5nZuIgAAAAAAQE1lpuqZ0GnEkOP05qwf9NvvO4utOWWm9bVr04BwqqIDKlNMyzBDs0xhLDNiCgAAAAAAwBtDql49WqptmwZKScnQ5r/2KTklXeFhwXa1PlMQvSJrTtV0R7SK3x9//KEdO3ZowIAB9ucZM2bo5Zdftiv6mf83NaoAAAAAAABqOhNCmUujhtFuN6VaO6JV/CZOnGiLpRm//fabXdpwxIgRdmSV+X8AAAAAAABvkZmdo9iUVB1ITrH/mp/hwAgqE0SZ0VKGqUV1+umn66GHHtLKlSttUAUAAAAAAFCTpWVmKSUzSz9v3aHvNm7Vhj37lZqZpdDAALVrUFcD27ZUr+ZNFBYYoJDAALebWzMDKlMQPTU11f7/119/rbFjx9r/N0XT80ZWAQAAAAAA1ERmlNTrP67Q28tWKy0ru8j+P/bs14er1ykkwF8XH99Nl/Ttrlphoa60tUYHVKb2lJnK179/fy1fvlxz5syx2//88081adKkotsIAAAAAADguuycHO2IS9T4t+fp77iEMo834dVLS37WgrV/6uWLzlLTmEj5+/k50lavqEH17LPPyt/fX3PnztXzzz+vxo0b2+2fffaZhg0bVtFtBAAAAAAAcJ0Jp857+b/lCqcKMseb6+04zOt5Ex+Px+NRNWWmE0ZFRSkhIUGRkZFuNwcAAAAAgBqjpve509PTbY3tli1bKjg4uFzT+s57efZhh1MFNYmJ0rvjz/eq6X7p5Xycj2gE1fbt20u9AAAAAAAA1KSC6Kbm1NGEU4a5/htLVyotK6tC2jVjxgy1aNHCBj99+vSxZZhK895776l9+/b2+M6dO2vBggWF9psxTJMnT1bDhg0VEhKiwYMHa+PGjYWOMeWdzjzzTNWpU8cGl6YM1KJFi476dzmigMr88ib5KukCAAAAAABQU5jV+t5atrpCbuutn1YpNePoA6o5c+bY+uBTpkzRypUr1aVLFw0dOlT79u0r9vgff/xRF1xwgS6//HKtWrVKo0aNspe1a9fmH/Poo4/q6aef1gsvvKBly5YpLCzM3qYZBZXntNNOU3Z2tr755hutWLHC3q/ZtmfPHuen+K1Zs6bQz1lZWfaXe+KJJ/Tggw/q7LPPlhNq+nBDAAAAAADcUtP73Iczxe+ztRt0y3uFRxsdjennjdSwY9se1W306dNHvXr1snXCjdzcXDVt2lQ33HCDbr/99iLHjx49WikpKZo/f37+tuOPP15du3a1gZSJhxo1aqR///vfuvXWW+1+89zXr19fb7zxhs4//3wdOHBAdevW1eLFi3XCCSfYY5KSkuzfx1dffWVHXDk6xc+kYwUvPXv21Pjx4/X444/bpA0AAAAAAKAmyMjO1ncbt1bobX735xZlZucc8fUzMzPt6KWCgZCvr6/9eenSpcVex2w/NEAyo6PyjjchkhkFVfAYE1CaICzvmNq1a6tdu3Z68803bdhlRlK9+OKLqlevnnr06KGj4a8KZBr5888/V+RNAgAAAAAAuCYlI1Mb9uyv0Ntcv2e/kjMyVMv/yIqlHzhwQDk5OXZ0U0Hm5/Xr1xd7HRM+FXd83tS8vH9LO8bHx0dff/21nRoYERFhQzETTn3++eeKiYmR4wGVGeZXkBkGtnv3bt1zzz1q06bNUTUIAAAAAACgqsj1eJSaWTFFzfOYIunmdqsbj8ej6667zoZSS5YssYXUX3nlFZ1++ul2wJIpru5oQBUdHW1Ts0MbaeY6zp49+4gbAwAAAAAAUJX4+vgoNDCgQm8zJCDA3u6RqlOnjvz8/LR3795C283PDRo0KPY6Zntpx+f9a7YVDJrMz6ZOlWEKo5saVnFxcfl1yZ577jlbf2rmzJnF1r4qryOqQWWWDzSNyrt8++23WrdunTZv3qy+ffsecWMAAAAAAACqkvCgILVrULdCb7N9g7r2do9UYGCgrfm0cOHC/G2mSLr5uaRcxmwveLxhgqW8400RcxNSFTzGzKAzq/nlHZOammr/NVP7CjI/m/s/Gkc0gmrgwIFHdacAAAAAAADVQaC/nwa2aaEPV6+rsNsc2Lalvd2jMWHCBI0bN84uXNe7d29Nnz7dFi6/9NJL7f6xY8eqcePGmjp1qv35pptusnnOtGnTNHLkSDsD7pdfftFLL71k95uZcjfffLMeeOABW77JBFZ33323XdnP1JwyTFBlak2Z+508ebKd4vfyyy/bAuvmNh0JqD7++ONy3+gZZ5xxpO0BAAAAAACoUnq1aKqQAH+lZWUf9W2Z2+nVvMlR387o0aO1f/9+GxSZIuZmGp4pVp5X5Hz79u2FRjr169dPs2bN0l133aU77rjDhlAffvihOnXqlH/MbbfdZkOuK6+8UvHx8RowYIC9zeDg4PyphebnO++8U6eccoqysrJ07LHH6qOPPlKXLl2O6vfx8ZjiUeVw6PCtEm/Qx8dWkneCGWpmljxMSEjIn/sIAAAAAACOXk3vc6enp9uRP2akUF4AU5K0zCw9991Pevn7X476fq88oZeuGdjH1qHyBunlfJzLXYPKzCUsz8WpcAoAAAAAAMAJIYEBurRfDzWJiTqq22kaE6VL+nb3mnCq0oqkm4LoHTt2tCnqoUyiaoZ1mWUGAQAAAAAAapJaYaF6+aKzFBF8ZMXNzfVeuugsezs4yiLppuDW+PHjix3aZ4b9XXXVVXriiSd0wgknHM7NAgAAAAAAVHlNYyL17vgLNP7tefo7LsEWOu/YoJ6ObVxPzetG2Z8zs3O0bX+Cft+5T+v27LM/m5FXJtwy10cFBFRr1qzRI488UuL+IUOG6PHHHz+cmwQAAAAAAKgW/P381LJOjOZeeYHW79+nyLAgrY7boXVJu/RF8hal52Yp2DdALRvU0RltWmlyzElKTMlQ+7r1FB0a4nbza05AtXfvXgWUMk/S39/fVpAHAAAAAACoiZKz0rU3K0Fv7Fqi7/dtlkdF154zodU8rZKPfDSgXivdEj1Y/lk+Cg8ovRi7NzusgKpx48Zau3atWrduXez+X3/9VQ0bNqyotgEAAAAAAFQZsRkpemXj93pz80/FBlOHMscs2bfJBlljWx2vK9oMUK2gMEfaWqOLpI8YMUJ33323XSLwUGlpaZoyZYpOO+20imwfAAAAAACA6w6mJ2v80rc0c/PScoVTBZnjzfWuXPq2vR0U5ePxeDyHM8Wve/fu8vPz0/XXX6927drZ7evXr9eMGTOUk5OjlStXqn79+nKCWU3QFGc3KwgWV7gdAAAAAAAcmZre5zaDb7Zs2aKWLVsqODi4zJFTJpxan7DnqO+3Q1RDvdz3IsV4yUiq9HI+zoc1xc8ETz/++KOuueYaTZo0SXnZlo+Pj4YOHWpDKqfCKQAAAAAAACdqTplpfRURThl/JOy2t3dNu4HUpDrSgMpo3ry5FixYoLi4OG3atMmGVG3atFFMTMzh3hQAAAAAAECVtjM13tacqkgzN/+kM5p2VbsoAqojqkFVkAmkevXqpd69exNOlVPCgUQd3B2nAztjFbcvIX8EGtwRvz9RB3fF2ov5f7gnNzfXvibMa8O8RhJjk9xuklfLzs5W3N54Hfj7oGL3xCs5PsXtJnm1zPTMQs9HWnKa203yaukpGfnPh/k3Iy3D7SZ5tdSk1ELPR1ZmlttN8mpJccn2ferAzoP2cz0nO8ftJnm1xINJ+X2PePoerovfn5Df90ig71GtJGam6cl1Xx92zamymNubvu5re/tHY8aMGWrRooWdOtenTx8tX7681OPfe+89tW/f3h7fuXNnOwCpoA8++EBDhgxR7dq17Wy51atXF9ofGxurG264wZZ8CgkJUbNmzXTjjTfaaaCOj6CqSPfcc4/uvffeQtvML2lqWtUkqUlp2rp2h168dabWLf3TbmvStpHG3nOueg7tqoiYcLeb6FVMZ3vt93/o1Tv+q61rt9ttbbofoyseGaN2PVsrLCrU7SZ6FRNG/fjRz3rngfe1Z8s+u+24Ezvq6icvUdO2DRUcxhkFJyUcSNLnr32j95+cbzt7vr6+6j2im66aNk71m9VRQFCA2030KqZDMffJ+Zr/wpdKSUhVQKC/Tjy3ry576ELVbhRja0LCOaaj99a97+rrtxYrIy3Tvj8NveQkXXjnv1SrQbTbzfMqJvgwodQrk97RkveX2Z8jaoXrzOuGadT1wxVVt+bVSanqQfqerfv0woSZ+uWLNTYIqdO4ls6deKYGjzlBkbUj3G6iV0kzfY91f+vFf8/U7z9usNsat2moiyefq97Du9nXCpzte5jn4bU7ZumvX7fZba27tdQVD49R+96m7+EdNYiqs7ScLLsCX2X4ft8me/uRCjmi68+ZM0cTJkzQCy+8YMOp6dOn2/JLGzZsUL169Yocb0o2XXDBBZo6dapd4G7WrFkaNWqUrSXeqVMne0xKSooGDBig8847T+PHjy9yG7t27bKXxx9/XB07dtS2bdt09dVX221z586VY0XSKyOgMr/A119/nb/N399fderUqTEF27Izs/XLl2s0+cxHij1rcdHd5+hfE05TOG9MjjAjD754fZFm3PR6sfsnvnGdBp7bV0EhQY63zVvPtL55z7v68JnPiuzz9fPVo19NVqcT2tMJd3CU5+OXPaef5q8osi84NEjPLp+q5h2butI2b30+Jg17UBtX/lVkX3TdSD33yyOq27R8n5c4enF74nVD3zu0d9v+IvtMx2/6kvsVXS/KlbZ5I3NC49qe/7GfI4c6tl873fvhbYqqUzW/G9ZEm1Zv0Y1971RWRtERbCed1083zLiCkMohWVnZWvnVr5p8xiN2hPqhLph0ls677Uz6Hg5JS0nXV29+p2eue6XY/f9+9RqdPLq/gkKrbt+jOvS5K7t492d//6ZbV7xfaW14vOc5Gt74n3DocJlQysxse/bZZ+3P5nXftGlTO8Lp9ttvL3L86NGjbQA1f/78/G3HH3+8unbtakOugrZu3Wofl1WrVtn9ZY3Kuuiii+xtm0znSIukH/EUv4piGt+gQYP8S3nDqeoiKT5F0y5/rsQhtWbUSFoi0zWckpaUrhdvfavE/c9c96pSE9MdbZM3SzyYXGw4ZeTm5OrRS55V0kGWYHXKjvU7iw2njPTUDD151Ut2ugAqn/nM+OmTFcWGU4aZlvz63bOZ7ueQzIwsvf/Up8WGU8bOjbv12asL7fRYVD4zmvCFf88sNpwyzEiFXxevc7xd3spMVXr80ueKDaeMb9/9scTXDipeSpzpezxfbDhlzH74Q6UmpDreLm/ue7xwyxsl7n/2+lftbBtUXVm5OVq6v/jvYxVl2f6/7P0crszMTK1YsUKDBw/O32ZmP5ifly5dWux1zPaCxxtmxFVJx5dXXoBZXDh1OFwPqDZu3KhGjRrpmGOO0ZgxY7R9+z9TroqTkZFhE9yCl6pu16Y9pdY3Mp2Qb2Z972ibvJkZzZadVXIHIj0lXX8s+2caJiqX+eL06UtflXrMvu0HbC0LVD4TdMx94n9nUorz+w/rS+yAoOJHT817pnA9gEN9O/sHpSVT/8gJpjO34KX/jfYuzsfPfaGkg9Rrc4KZXrn0k19KPeb9J+YTqDvEnMDYvGZrqceYaePmeUPl271ln52iX1rf46u3FjvaJm+2auGvysosue9hXhdrf/hnGiaqpuSsDG1OOlCp97Excb9Ssg7/O92BAweUk5Oj+vXrF9puft6zp/jVBs32wzm+vO24//77deWVV+pouRpQmeFob7zxhj7//HM9//zzdsjXCSecoKSk4r9QmHmSZnhh3sUMXavqSvuAyMNZJeeYehVlObgrzpG2eLuc7FxbtLM8HXVUvqyMbFvvqCwZqXQwnJCb41H8vtL/9s0XXjPSEM4oabROnrKeL1Qcc6KprL99835GgW5npJZjJkDc3gROcDikPJ/l5gQgBdOdUZ7vugfLcQzcYwqZp+dW7vtXRm62ciu4ALtTzKChkSNH2lpUpoRTtQ6ohg8frnPPPVfHHXecHVZmqsfHx8fr3XffLfb4SZMm2aFjeZcdO3aoqjN1KcrSrlcrR9oC6ZguLco8pkWnqh981gSm2LMpEFmW+s3rOtIebxcUGqjmHZuUeoyfv5+Cwyla7wT/QH81aVv654cpcuvn7/pAaK9gvjI2aFm00GhBTdo1ko+PY02St39+hJTxXtS0fWMFBLOogxMia4fbVZ5K07JzM/s5g8rXqFWDMo9p17NVmc8ZKsYxxzUv85iWxzVzpC04Mj7yUbBv5X6eBPn6y1eH/5o05ZFMrd69e/cW2m5+NuWTimO2H87xpTEDi4YNG6aIiAjNmzdPAQFH/zhVqW+20dHRatu2rTZt2lTs/qCgIDuvseClqoupF6Wm7RqVuD8wOFC9hnd3tE3erF3v1qWumli7US01bVvy84WKNejCATb0KEnbnq1YVdEhZmGAcyacXuoxA87uo2A6GI6IrBWuC+84u9Rjzrh2qMJjKHLrVAf8vIlnlHrM+f85k5XjHBIaGaJhl51S6jEX3HE2RaAdEhgSpF7DSi+ea1ZXDAgkMHRCVJ2IUk84mdV4jz+9p6Nt8matux9T6qqJMfWj1axD6ScI4a7wgCC1iqjcOtltIusqLODwC+UHBgaqR48eWrhwYaEyKubnvn37Fnsds73g8cZXX31V4vGljZwaMmSIbcPHH39cauHzahtQJScna/PmzWrYsOxRR9WF+bJ6zwcTFR4dVuwqZZPn/lthUUe2pCQOX3h0qO776D/2w7m4VcrMvojaLL3rFBM+3f7WDcWexTOrlN3535tZhclBMQ2iddlDF5Z4RvaaJy5RaCSBoZNfaodfPqjYfe16tdaoG0bQ4XOIOTt54jn91OPULsXu73dmL/Ua1o0RCQ4G6hdMOrvEkQln3zRCTTjZ5JiImDDd/OJVJa4qet3Tl7GCn8N9jynv31rsCVnT97j73QkKi6Tv4RRzIumBT263gxKK63vc//F/7EkpVF0Bvn7qW/eYSr2PPnWPsfdzJCZMmKCXX35ZM2fO1B9//KFrrrnGrqR36aWX2v1jx461M9Hy3HTTTbbE0rRp07R+/Xo7Le+XX37R9ddfn39MbGysVq9erXXr/llwZMOGDfbnvDpVeeGUuZ9XX33V/mz2mYupiXU0fDwuTkC+9dZbdfrpp6t58+batWuXpkyZkv9A1K1bt8YseWlqIJj54J+88KUtapudlaPug4/T+bePUq0G0QoOY8qMkzLTM20thLnTPrErlvn4+mjAWX101k0j7Ig3M7UGzhbnPvB3rGY99IFddcl8gJ968YkadvkgRdeLtCtRwDnJ8SnatXmP3rl/rjau2mpDxNOuOlUDz+2r6HpRbjfP6yTGJumvNds068H39fefuxVTP0pn3zxSPYd2Jbx1QcKBJP32/Tq999jH2r/joOq3qKvRt41Sh75tFUUH3HGmRqH5HDerwZqV5Jp1aKwxd5+jFh2bljpiAZUjbl+Cvpm1RJ+9slCpSelq36uVfT4atKjHaGiHmQ5iwr5EzX/xS7sYk6lZ2G1QZ10w6SzVbhhD38NhmRn/9D3M4g1LP/7FzBlT/1G97ee5+Vyv6iebqkuf+0ilp6fbWtgtW7YscRTQ3rREDfrySVuPqqKZqX1fD7lF9UOO/LF99tln9dhjj9mAqGvXrnr66adtvW/jpJNOUosWLWzt7zzvvfee7rrrLm3dulVt2rTRo48+qhEjRuTvN8fmBVwFmbzGBFrffvutTj755GLbYh5Lc39H8ji7HlCdf/75Wrx4sQ4ePGgDqQEDBujBBx9Uq1atauSLJSszS8lxKTKPeGhEMB8OLstIy1BqQpr9kDBfnIo7swHnmCV2M1L/Wb3CdCz8AwgK3ZSckKLM9Cz5+vjYUYVmBAnckxSbrKysbBvYmtGFcFfCwSR78snf34+RIS4zX2NNcGimNJjaVKVN40flM8XrzeqJuR6PgkICFcao2yrQ90i1lfRMDckQ+h7u9z3+f1GB0KhQBVWTvkd163MfrvIEJ4mZabptxftasq/4UkRH48R6bfRIj7MVGVizRzaWN6BytQc4e/ZseROTjpt5xqg6UwTMBVVDaESIvaBqsLVbGDBVZTAapGphtFTVYaZVEtpWHWYKGaNtq1rfg+ejqqDvUX2Z8OiWjoP1/b7NpY6iahZWSw1Doux0vazcHO1OS9D2lNhSC7Df3HFwjQ+nDgdDFAAAAAAAAErQODRaY1sdr5mbl+ZvC/EL0GlNjtWoZu0VExikpKxdSs76Wx5lmrX/FB7QWhEBjRSXmaEPt6/X/L9/V1pOVv71x7U6Xo1DCZELIqACAAAAAAAoQXhAsK5oM0DLD2zVluQDurF9P53coKW2pXypX2PfUFpOXInXDfGL0aCGI3RZ6zFatGeLnl7/o1qG17G3Z24X/0NABQAAAAAAUIpaQWF6pe/FSsw6oI1J7+qznffaGm9lMeHVuvh3tC5+llpHnKZ5J49VpH9tRQdRp+9QLI8FAAAAAABQiuzcDGV7/tbivRO0KfGTcoVThXm0KekTLdkzQdmenfb2UBgBFQAAAAAAQAlMmLQv/Q/N236tUrL3H9VtJWfv07zt19jbI6QqjIAKAAAAAACgGB6PR/GZ2/Tp37cq1/O/IudHw9yOub34zO329vEPAioAAAAAAIBipOfE6/Odd1RYOJXH3N4XO++wt49/EFABAAAAAAAcIiMnRb8cmHnU0/pKm+634sBMez8goAIAAAAAACgiKzdV6xI+rNT7WJfwkb0fEFABAAAAAAAUkpObpfUJ849gtb7D41Gu1id8au/vSMyYMUMtWrRQcHCw+vTpo+XLl5d6/Hvvvaf27dvb4zt37qwFCxYU2v/BBx9oyJAhql27tnx8fLR69epib2fp0qU65ZRTFBYWpsjISJ144olKS0vT0SCgAgAAAAAAKCAjN1nr4j9y5L7WxX9o7+9wzZkzRxMmTNCUKVO0cuVKdenSRUOHDtW+ffuKPf7HH3/UBRdcoMsvv1yrVq3SqFGj7GXt2rX5x6SkpGjAgAF65JFHSrxfE04NGzbMBlkmEPv55591/fXXy9f36CImH081LhmfmJioqKgoJSQk2MQOAAAAAABUjJre505PT9eWLVvUsmVLO6KooJSs/Xr7r3Mca8tFx8xVWEDdw7qOGTHVq1cvPfvss/bn3NxcNW3aVDfccINuv/32IsePHj3aBlDz55uRYf84/vjj1bVrV73wwguFjt26dat9XEyQZfYXZK5z6qmn6v777z/qx7kgRlABAAAAAAAUkJC1s0rfX2ZmplasWKHBgwfnbzMjmMzPZoRTccz2gscbZsRVSccXx4zOWrZsmerVq6d+/fqpfv36GjhwoL7//nsdLQIqAAAAAACAAuIztzl8f9sP6/gDBw4oJyfHBkQFmZ/37NlT7HXM9sM5vjh//fWX/feee+7R+PHj9fnnn6t79+4aNGiQNm7cqKNBQAUAAAAAAFBAdm5Gjb6/I2WmERpXXXWVLr30UnXr1k1PPvmk2rVrp9dee01Hg4AKAAAAAACgAH/foCp9f3Xq1JGfn5/27t1baLv5uUGDBsVex2w/nOOL07BhQ/tvx44dC23v0KGDtm8/vFFghyKgAgAAAAAAKCA6sLnD99fssI4PDAxUjx49tHDhwkKjm8zPffv2LfY6ZnvB442vvvqqxOOL06JFCzVq1EgbNmwotP3PP/9U8+ZH95j5H9W1AQAAAAAAapiogMZV/v4mTJigcePGqWfPnurdu7emT59uV+kzU++MsWPHqnHjxpo6dar9+aabbrIFzadNm6aRI0dq9uzZ+uWXX/TSSy/l32ZsbKwdCbVr1y77c14QZUZZmYuPj48mTpyoKVOmqEuXLnaFv5kzZ2r9+vWaO3fuUT0GBFQAAAAAAAAF+Pj4K8QvRmk5cZV+X+Z+fHwOP54ZPXq09u/fr8mTJ9tC5yYsMkXL8wqhm6DJrOyXx6y6N2vWLN11112644471KZNG3344Yfq1KlT/jEff/xxfsBlnH/++fZfE0iZwujGzTffrPT0dN1yyy020DJBlRmJ1apVq6N6HHw8Ho9H1VRiYqKioqKUkJCgyMhIt5sDAAAAAECNUdP73CZk2bJli1q2bKng4OBC+3Jys7Qq9m2tOPhGpbejR+1L1a3WGPn5BqgmKu1xLogaVAAAAAAAAAWYsKh91GlmXE+l3o+PfNU+amSNDacOBwEVAAAAAADAIQJ8Q3Vs1KhKvY+OUWfa+wEBFQAAAAAAQBFBfmHqUWecwvzrVsrth/vXs7dv7gcEVAAAAAAAAMUK9ovWsMYPydenYqfgmdsb2vghe/v4BwEVAAAAAABAMXx8fBQd2FwjmzxeYSGVuR1ze9GBzezt4x8EVAAAAAAAwGvl5uaWut/fN0j1gjvorGbP22l5R8Nc39yOuT1zu94gt4zHN49/pbcEAAAAAACgigkMDJSvr6927dqlunXr2p9LG9EU4dNMZzV7USsOztQfCR/Lo/IFL3mr9XWMPlPda42VX26YsjM9yla6ajKPx6PMzEzt37/fPs7m8S2Nj8dco5pKTExUVFSUEhISFBkZ6XZzAAAAAACoMbyhz20ClN27dys1NbX8U/7qhCsk3E9/Jn6mPxI/VlpOXInHh/jFqEPkGWobOVxpyTmKP5BsgxtvEhoaqoYNGxJQAQAAAACAw+ctfW4Ti2RnZysnJ+ewrufja0ZBpcrjk6vEzL8Vl7lDOZ4M+fkEKSawqSIDm8jH4yt/hcqT6521pvz8/OTv71+uWltM8QMAAAAAAF7LhCcBAQH2criCFGL/DQ+oq0Zh3Sqhdd6DIukAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBV/m43wFtkZ2crKTZFyXHJysnOVVSdSIVGBisoJMjtpnmlzIxMpSSkKfFgknx8fBRZK1xh0aEKCAxwu2leKT0lQ2nJaUo4kCT/QH+FRYUqqnaEfP3I0N2QmpSq9JRMJexPUHBYsELCgxVVN9K+VuC8pLhkZaZl2ver0MhQBYUGKbpupNvN8lrmechIy1RSbLL97AgKDVRErQi3m+W14vcnKiM1Q6mJqYqsE6mgkECFR4e53SyvlJubaz/H05LS7GvEfG6EhAUpJDzE7aZ5bd8j2fQ94lOUnZVD38NlmRlZSolPVWJsksy3qYjaEQqn7wFUvYBq586d+s9//qPPPvtMqampat26tV5//XX17NlTNalzseT9ZXrj7tmK2xtvt5lO35nXDdV5E89UZG2+2DrJdCo+fv4Lvff4x0pJSLXbImqF68I7ztbQS062/w/nJBxI1Nv3zdVnry60X2iNOo1r6crHLlavYd3oaDjMvEc9f8sbWjz3J+Vk59htjds01M0vXKm2vVorNDzY7SZ6lf07DurJq17QL1+skcfjsdtad2upW1+7Vk3bNVJgcKDbTfQa5vWw+6+9euzSGVq39M/87Z1P6KBbX79O9ZvXkZ+fn6tt9CYmlNr6+w5Nu+J5bfltu93m6+urPiO768bnx6tOo1puN9GrmIBw7Q8b9OwNr9rXiREQ6K+TLxig8Y9cpOh6UW430askx6Xo+w+X6fU7/6vYPf/re5x+9ak6//az6Hs4LDE2WZ+++KXefexjGxjm9z0mnaWhl55C3wMowMeT943XBXFxcerWrZtOPvlkXXPNNapbt642btyoVq1a2UtZEhMTFRUVpYSEBEVGVs2zyRlpGVrwykI9d9Prxe4/6fz+uuHZyxXJ2VdHmA+FmZPn6MNnPyt2/0V3/UvnTjxToRGc7XNqJMIjY5/R8s9WFbt/4uvX6ZQLBthRVah8CfsTddup9+mvX7cV2WdGTz3+zT06bmBHV9rmjeL2Jui6Xv/R/r8PFtlngqkXVj2qpu0au9I2b7Rv+wGNP+7ftiN+KNPZe3H14zZchzPM+9R1vW5XdlZ2kX0Nj6mvp398kFDEwZFTJkS/c+RDxe5v37u1Hpg/yY7gQeUzJ/u+eP0bPXP9q8XuP/Gc43XTC1fS93BIckKK3rr3PX0w/dNi95vA8ILbR9kR0lVVdehzo+Zwdf7MI488oqZNm9oRU71791bLli01ZMiQcoVT1UVqYro9e1GSb2f/YEf0wBlm2PlHMz4vcf/sRz5SenK6o23yZqbjXVI4Zbx465tK+v8zTah8vy/dUGw4ZZhzGc/c8Kri9yc43i5vHa3z9VvfFRtOGZnpmfb1kXcmFpUrLSVdb98/t9hwKi9sn/vEJ8pI/2cUKCqXebxn3PRaseGUYUbw/PDhchucoPIlHkiyI6dKsn75pvxRbqh8qUlpenXSrBL3mxHSZiomnJGelK4Pny7+xLhhZnSkpWQ42iagKnM1oPr444/tVL5zzz1X9erVs6OpXn755RKPz8jIsAluwUtVt2XtNqWVEXh89eZ3jrXH2y39ZEX+NJnimC+7a75b52ibvFVuTq7mv/hVmZ2Qfdv3O9Ymb2amu37y/JelHrN17XZlpmc51iZvZv72zbTX0vz82WqeDwfr5H0za0mZn+Wp/z9tHJUrKyNbv5bxWf3pS18r8SAnAJ2QmpiWP62vJObkoAl6Ufm2//G3DalK8+Xrixxrj7dbtmBlqWG5OSG1+pvfHG0TUJW5GlD99ddfev7559WmTRt98cUXdprfjTfeqJkzZxZ7/NSpU+3wwryLGX1V1aUllf1hbIqnwxkpCSkVcgyOXk5ObomjEQ73NYSjZ74glRWmG9mZxY9YQMUyOXpZz4f5wmuCXlQ+U9A2r0ZeaSN0/zkSlS0n55/6eKUxHXQPI6gcUZ6Rg+b1kVfXEJXrn/eisuvjuljlxavk1bstTXI8JzeAKhFQmS/X3bt310MPPWRHT1155ZUaP368XnjhhWKPnzRpkp37mnfZsWOHqrqWnZqVeUz3wZ0daQukTgM6lHlM+95tHGmLtzPFU7udUvrfvql71Kh1A8fa5M1CIoJ1bL92pR4THGpWY6JIuhPMSmTtepY+3b1u0zry86cotyN8pFZdWpR6SNuereTnz8qjTjCrXpW1kmWHPm0UHMZqZU4wq/WZz/TSdD6xI8+HQ5p3LPsEfvfBx7Eyr0OO7d++zGM6HE/fA8jj6jephg0bqmPHwgV3O3TooO3bi5+nHhQUZAuzFbxUdWHRoaV2+kxh1bI6hag4ZtWres3qlLi/WYcmFLl1kFltqbTAo8eQLgQiDnb4zrh2qHz9Sv5YGHbZKQphAQFHhEWF6qLJ55Z6zOiJZyiqDkVunRBdN0oX3X1OqcdcPPlcVsZySEStMJ1982mlHnPBpLMUEs77lRNCwoLsan0l8Q/wt6sk+/uz4IkTQqNC7eqiJYmICbeBIZzRuHUDNWhRr8T9Tdo2Ur2mJfdNAG/jakDVv39/bdiwodC2P//8U82bN1dNYVYsuWvOLXZFmUOZ1RoeWzhFEbVZWtTJs3yPfHl3sWdeazeqpQc/ncSqPw4KjwnTI19NtiNzDtW8YxNNfO1a+0UKzjBhx+S5/y42pDruxA66aPI5xT5XqBwNj6mna6ZfWuw+0xk0l9ICRVSsLicfq1E3DC8xDGnbq+Ys8FLVmcBjxPhB6ndmryL7zKiQCS9fzckmB5kgcPwjF9nV+op7ru7/5D82VIQzompH6I5ZN9tg5FBmlepHv56syFp8t3Ky7/HwF3cV27+o3TBGDy24g74HUICPx8UJyD///LP69eune++9V+edd56WL19up/i99NJLGjNmTI1a8jJ+f6LWLvlDX7yxSNlZOTr+tB468V/HK7JOBFM0XJhaalac+Wn+Ci2eu1Q+vr465YIB6nHqcfZDhCHPzjI1jUxB6G9m/6AVX6xWQHCARowfrA6929jnA85KT0m3K4sueGWh/vjpTzuSZ9QNI9SsQ2OWCHeBqYlnCj1/+Oxn2rp2h2o1jNa/bj7NjgRltI7zTN2W2N1xdrnwPVv3q1Gr+jr7ppGKaRCt8Gg64E4znx27t+zVvOmfKm5folp1bWFHgkbUCldYFV6yvaZKOJCoLb9u10fPfW7rIJlROmbklAmngkI4ueFK3+OHP/TFa4vsdy3T9zjhnL6KrB1ug0M43/cwBdO/e/dH29c4+YL+6jmka7Xoe1SnPjeqP1cDKmP+/Pm2ttTGjRvVsmVLTZgwwYZUNfXF8k/RTo+Cw4Pk50cw5Sbzp2+eD5//H80Gd5liz2nJaXZECNMy3GdWtExPzbBfYhk15b6szCxlpGYqICjA1qeCuzLTM+0KioEhAQoM4vlwW0ZqhrKysu1rw0xXhrvMan2mILqpOcW0PvfR96iafQ9TMqGqB1PVuc+N6sv1gOpo8GIBAAAAAKBy0OeGkyheAQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBVBFQAAAAAAABwFQEVAAAAAAAAXEVABQAAAAAAAFcRUAEAAAAAAMBV/u7evfdISUxVRkqG1v+8SdmZOWrXq5VCIkIUWSvc7aZ5peS4ZKUmp2vDz5vk4+Oj9r3bKDg8SOFRYW43zSslHkxScnyqNq36S4HBAWrbs7WCw4IUGhHidtO8Uvz+RCUcSNSWX7cpPCZMrbq0VGhEsIJCg9xumtfJzc1V4oEkHdgZq7//3KWYBtFq3qGJwqJDFRAY4HbzvE52VraS41K0a/Me7d12QA1a1lPDlvUUUTtcfn5+bjfP62RmZCk1IVVbf9+h+H0JatahiWo1iFZU3Uj72Q5npaemKy0pXZtWbVFKYppadWmuyNoRiqoT6XbTvFJqYqrS8/se2Wrbs5X9XmWeEzgvKT5F6cnpWr/c9D30T98jLEjh0fQ9gCoTULVo0ULbtm0rsv3aa6/VjBkzVJM632/d954+ef5L5WTn5G/vPbybbn3tOsXUj3K1fd7Y+X7m+le0ZO5P8ng8dpuvr68GX3yirnzsYr5IOSx2d5weGvOU1nz7e/62gEB/nfPv03XOv88gxHWQeT3s3bZf95z9mDav3pq/PSQ8WJdPHaNBY07gi5TDYciODbt0z1mP2UAkj+lc/PuVa9T1lE6EuA7KSM2wJzUevGC6YvfE52+v07iWJr/3bx3TpYWCQgJdbaO3nfhbvmClnr72FSXHp+Rvb9quke6dd5satWlAaOigpLhkff7aN3pzyrtKT83I396uV2tNnvtv1Wtax9X2eRvT93jngff18XNf2M+SPD2HdtVtb5i+R7Sr7fM25qTfsze+pu/m/Fio7zFozABdNW0cfQ+gAB9P3qvEBfv371dOzv8Cm7Vr1+rUU0/VokWLdNJJJ5V5/cTEREVFRSkhIUGRkVXzhZ2alKaZk+fog6c+LXZ/x75tdd9H/+GNycEP7EcveVbLPl1Z7H7TAb/+6csUHkMo4lRYeNvge7Xlt+3F7r948rk677YzFczIHUeYEQhXd79NB3fFFrv/9rdu1Enn96PT5xAzauryjjfbz5FDmdEhT35/v47t286Vtnmj7ev/1pXH3VroRFOegKAAvbL2CTVq1cCVtnmjlV//qv8Mub/YfREx4fb5qNUwxvF2eSMTgJhw6qlrXi52f4MW9fTMsocUXZcTsk4wnxnmxPjcaZ8Uu79979Z6YP4k+h4OSYxN0rTLn9ePH/1c7P6TzuunG58fb9+3qqrq0OdGzeFqDaq6deuqQYMG+Zf58+erVatWGjhwoGqK9JR0e/aiJOuW/qkDfxffGUTlnOErKZwyvpn1vZ36B2fsWL+zxHDKeG/aJ3a6ACqfOVex7NMVJYZTxmt3zlLSwWRH2+WtMjMyNe+ZBcWGU3nP18sT37KhOypfSkKKXrvjv8WGU0ZWRpbevu89pSUX/3yh4k9uvDTxrTJH8xQcOYLKkxSXoplT3i1x/56t+/Trd+scbZM3M9P6PnrmsxL3mylmZooynJEcl1piOGV8++6PJX7WA96oyhRJz8zM1Ntvv63LLrusxLoBGRkZNsEteKnqzDz8sr4gff32Ysfa4+2WfvJLqftNp2/VwrWOtcebmdGTX7z+TZkB785Nux1rkzczU2S+fntJqcfs236g0NQNVJ6U+FQtfm9pqcf8/uMGZWXSAXdCZka2fpq/otRjvp+33HYMUflMPZ3Na/43Dbk4i2b/YOuFwZm6nmYEbmm+nPktnXCHmPqRZX02fP3Wd461x9stW1D6Z4ex4ss1jrQFqA6qTED14YcfKj4+XpdcckmJx0ydOtUOL8y7NG3aVFVdTlZOOY6hg1Glno9sng8neP6vvTuB07FqHzh+YVaz2cUgW5SQXZZsoSTb+1KJQkmlVUiUPUsiWqVFSquKSuUlS/YIJVuyhmRnZpgxlpn/5zq9M82YeWb0fz33ucf9+34+z8c8z/1Upznuc9/nuq9znaRkOX8uKdvvJfnIWMAllqz9cf6i+g3+p7/lizk/6A9n6GOzpPNZ98df/UVhbidcTHUKHc+SzZkEf8vu3Eg5PxivnHHuIq7l+vDcYpUXT7m4uSD3uoDrAlRvv/22tGrVSooXL+7zOwMHDjRrX1Nee/fuFbcrX71MtjvJNPhXXcfa43VaHDI7VRtf60hbvC4gMEAaZvN3P09AHomu4HtMwKWTNzKv1G1dI8vvaHFuLZgO/8sbHiI1mlfN8jtXViohAUHUA3NC7jy5pcoN12T5HS1aHxjM5shOCAgKMDsoZqX2zdXZRMAhkYUis7021G9XW0IjuH44oWzVK00B7qzc8K/r2enSITVbZH0tV9WaVnakLUBO4IoAle7kN3/+fOnZs2eW3wsODjaF2dK+3E4v2A061PF5XAuq6pbhcEbB4gVM0NCXqo0qSUR+dilzyrX1K5o+8UV3VgwNp0C6EzQY2OKuxllOMjr1bSNh+fI62i6vCgkLkc4DO5h+8aXbiNspOuwQDc72GNXZ53Gd6HUfeTu7XDokqlCE3DW0k8/juhPsvx5vLcGhXD+ckDcyVNo/0srncT0vGnaok23QBJeGXscb/tv3A0AN7papUsrRNnmZbtZQoWbZLO+FIwtFONomwM1ccaV45513pEiRItK6dWu53OhucI+9dp9Ub5YxMh5d/goZN3+I5CvCBMMp+QpHyrOzn8r0wqxbIT/zSR92NXFQVOFIeWHxcClSKuP209ffWlPue66r5I0gIOKUiEIRMuH74RJRIONOMq3vbyG39GougUGBVtrmRQWL55eRswdk2MVSJ3n3jOos1ZtVsdY2LypTuZT0eeN+k/15YTDkqemPSDQ7+DlGz4F6bWrJnYP+lSELRCfnY+Y+I/mKcm/llOCQIOn4RBtpcVejDMf0Hnfi0pFMwB2kAcFHXukpNZpXyfTB+PiFw5h7OEjnFSO+ekrKXVc6wzENXA35rB9zDyCNXMmWFyAnJSVJmTJlpHPnzjJ27NjLdsvLmCNxcuLQCVn00XKz20+9trWkRIXiXCAs7gCku8os+/wHc6Pb6LZ6Uii6oAlgwVk6BGl/7N64R36c85MEhwVLs84NzcVasxbgLK1LEXfslGxeuVU2LN1izokmdzSQsKi8rt4C+XKVmHBG4mPjZe38X2Tb2p1S9MrC0qjj9RIaESphkQRvnaa79MXHnZaVX62RvVv/kCsrlTTBdF26FBrG8iWnnYqJN+fH4s9WypG9R6VinavMUhnN9AwKJpjutLhjJ82GG1qgXncYrX5jFalYq5xEFAyXPHlYjuy0mCOxpni9zj3O6NyjTS0pWZG5hy0nDsfIod+PyJLPVprAus49ipQoZB7Wul1OmnMj57MeoJo3b57cdNNNsnXrVqlQocI/+mc5WQAAAAAA8A/m3HCS9WqeLVu2ZBcJAAAAAAAAD3NFDSoAAAAAAAB4FwEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWBVg8z9+/vx5GTZsmLz//vty4MABKV68uHTv3l2eeeYZyZUrl1xOYo7GyfEDJ+T7j5fLmcSzUq9NLSlZsbjkKxJlu2meFHM4Vv7cdVCWzVxl/q41uq2eFClRSKIKR9pumuckJyeb/ti1cY/8OOcnCQ4LlmadG0pUoUiJLBhhu3mec+7sOYk7fko2r9gqvyzZLPkKR0rTzg0lLCqvROQPt908z0lMOCPxsfGydt562fbTLilaqpA06lRfQiNCJCwyr+3meU7CyQSJjzstK778UfZu3S+lry0p199aQ0IjQiU0LMR28zznZMwpSYhNkMWfrpTD+47K1XXKS7WmVSQsX14JCg603TzPiTt20lw/Fn28zPxcvVllqVi7vEQUDJc8efLYbp7nxByJleMHY/6ae5w+I9e3qSWlro5m7mHJicOxcnD3IVn6+Q8iuXJJ4071pEipQuZ+F8DfciXr7NCS0aNHywsvvCDvvvuuXHvttbJmzRrp0aOHjBo1Sh599NFs//nY2FiJioqSmJgYiYx078l94lCMjOo8UX5etCnd59Hlr5DnvhsiRa8sbK1tXnR0/zEZ2GqU7NqwJ93nFWqVk2dnPyX5i+az1jav0eHnz50Hpf+Nw+XQniPpjl1/a03pN7U3F24HnT17TnZv2CMDWo40k4u0WvdqLveMvlMiCxA0dMrp+ETZsHSzjPj3BPNzity5c0v3kbdLmwdvkvB8YVbb6CWnYuJl8YwV8tJDb8n5c+dTPw8MCjBjlY5ZeQkaOibu+En5bMJs+WjMLHMtSREaHiIjv3pKrq5bXoJDg6220Utij8bJ609Mk++mL0n3uQZDxs0fYgIjeQIIUjkZDBl950T5acHGdJ8XK1vU9McVpYtYa5sXHf3zuDx9y2jZsX53us8r1CwrI2cPlAJXuHvukVPm3Lg8WF3it2LFCmnXrp20bt1aSpcuLR07dpSWLVvK6tWr5XJx8vhJebH3mxmCU+qP7QfkyeYjTAALzl2wn2kzNkNwSv22Zoc8e/tE88QJztDMqScaD80QnFI/fL1W3hzwvsTHxVtpmxfFHYmTvk2GZghOqW/emC/fvjFfzp45a6VtXnR0/3EZ3Oa5dMEplZSUJFOf/kh+WrjBWtu8SLM8J94/JV1wSp09c07G3vWy/LHjgLW2eY2eAytnr5EPR89MF5xSCSdPy8Cbn5UTh7iWOyXx9Bn57IXZGYJTSu9xn2g0xASw4IyTJ07Jyw+/lSE4pVIeCjL3cI7OK4a0HZshOKV+W7tTRnQcz9wDcEuAqn79+rJgwQL57bffzPv169fLsmXLpFWrVnK50Bul5bN8B9z27zggv2/Z52ibvJ49tf2nXT6P65ImTU+HMzat2Gr6xJf505dIwsn0k3P4h066v5u+2IxZvnw6YbacOkHA0AkJp06bzJALgyFpvTvkEyYZDtHJ9TtPf+TzuAZJpg3+xEwM4X8xR+Jk+vBPfR7XoOHMSd9IYgLXDyfExybIFy/P8Xlcz4tls1abwCL8T6/jyz5f5fP4gV2HMn1QC/849udxE4jK6l6YAC7gkgDVU089JXfccYdcffXVEhgYKNWrV5fHH39cunTpkun3ExMTTYph2pfbaTAku1WUy2f6vojg0loz9+dsv/PL4ozZbvBPrSOtAZYVnZz/8dt+x9rkZVrnaNU367L8jt5AZRXAwqWjv+d183/J8ju/b94n5876DmDh0kk6nyQblm7J8js/L9woZxPPOdYmLzt35pyZZGflx//8JPFxCY61yctij8Rme23Qum0JcVw/nLDzl9+zDQYunflDtvMTXBprv8v6Wp5y/QDgggDVjBkz5IMPPpAPP/xQ1q1bZ2pRjR8/3vyZmTFjxpj1rymvkiVLitvlCcx+vX2eQKu16j3lovojgP5wQq7cuSRPQPZDUG5qVjgjl/ZHnovqN/if/pYv5vygP5yh07jcebLuj7/6iwmfEy5mIx0dz3KZMwn+lt25kXJ+MF45I+AiruUBgQGX3YZUOXsuyL0u4IoAVf/+/VOzqKpUqSJ33XWX9OnTxwSiMjNw4EBTnC3ltXfvXnG78tXLmItAVpp3beRYe7yufpvaWR7Xi3X1Gys71h4v0x19burRLMvvhISFSHT5Yo61ycu02Hbzrjdk+R3d0CEkL0WHnaC7kDXqVC/L71xbv6Ip0A3/CwoOMEXQs9KwQx0zZsH/AoICpFy10ll+p+kdDSQ8P5sIOCE8f3i2O8O17NZE8kaEOtYmLytT9cpsrw3N72rsWHu8ru4tWV87VM2W1znSFiAnsBqgio+PN7sRXThp9ZWWGhwcbHYOSPtyO71Zbdv7Jp/HK9WrIIVKFHC0TV6mN6t1W9fwebzZnQ0lbzgTDKeUvDpaylQp5fN4p75tJG8k/eEEDc7WbV1TCkX7Ho96PNvZbBcO/wsKDpIOj9zic0Kn/dXr+bslsiC7KjohLCpM7hnd2WeWYWBwoHQd0snsIAf/y1c40vz99yUif7jcfG+zbB8Q4tKIyB8m3Ybf5vO47hhXtXElR9vkZSFhwdLuEd/1fK+uU16KXlnI0TZ5WXj+vFK/ne8H5E1uq0/wFnBLgKpNmzYyatQo+eabb2T37t0ya9YseeGFF6RDhw5yudABp8sz/5b2j7TKcGNbp1V1GTbzSYkq5P5A2+VCJ3P9pj4kjW+rny61WQOlN3VvIg9O7G6eBMK5ScbYuc9Itabps9b0yV/ngR2k/aO3sE24g6IKR8rEpSMzZCbopPuRV3qa4K4+RIAz8hWJlEnLn5Xi5a7IMI4Nm9lfSld2/zL3y0mRUoVl3HeDM2wHrkHdCYuGZRncxaVXsXY5GfTh4yb7M62SFYvLi8ufNeMZnKGBQL2v6vX8XRmybCvWLi8vLB4u+QpnnWGFSzv36PxUB/nX460zBGlr31xNRnw5gLmHgyILRMgTbz4gTe5okC4xQ39ucXdjefiVe01QHcBfciVbrJAXFxcngwcPNoGpQ4cOSfHixaVz584yZMgQCQoKyvaf1yLpWotKl/u5PZtKCxCfPpUov/64Xc6dOW9urEIjQiWyAAOSDXHHT/7VH6u3mQuE3kCFhAdLeBTLAWzQ4tunYuJl27qdEhQSJBVqlZPQ8GAJDeeJkg0nDsdI7JE4s8uPZh2WrVraZLIRLHSeZhRrXxz545js+22/FCiWX0pdHW2WAAYGBdpunic3d9CdXv/ccUAO7TkiV5QpYrJDNLOQ4K3zziSelfiYeLNhwPGDJ6TUNSVMAFGDU9TXcd7p+NOSEJdoNgjS+96y1Uqb+1yCIXbnHlt/3G52tqxY679zDzJvrdBrx+lTp+XX1du17KdcXecqk+12YZDdjXLSnBs5n9UA1f+KkwUAAAAAAP9gzg3PLPEDAAAAAAAACFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAqgC7/3nviY9LkOSkJAkJD5E8efLYbo6nJScnm/7IJSJ5I/Pabo7nJZ1PkoSTCZIrd27JGxFquzmed+7sOTl9KlECAvNISFiI7eZ43tkzZyUx/owEBgdKcGiQ7eZ43pnTZ+XM6TMSFBooQcH0h22J8Yly9sw5Cc4bJIFBgbab43kJp07L+XPnJSQsWAICmGrYxtzDfXMPpfe6uXLpLARAWlavGnFxcTJ48GCZNWuWHDp0SKpXry4vvvii1K5dWy43Jw7HyIalW2TetO/l3Nnzcn3rGnJDx3oSVShC8gRwsXDS+fPnJfbISfnh6zWy9PMfzMWhaeeGUqvldRJVOJKLhYWJd9zRk7Lw4+Wydu7PEhgSKLf0bC7X1L3K9AecdfrUaYk7dlK+fWuBbF75m4RF5ZX2j7SSKyuVkKhC9IfTTsXES8yROPnylTmye9NeyV80Sv7d51YpemVhiSwYYbt5nqPnxtE/j8vMSV/Lgd2HJbr8FdLhsdamXyLyh9tunufEHI2TP3celJmTvpGYw7FSrlppadv7JokoEC5hPHhynPbBzl9+l68mz5WEuASpfMM1cnOPpubcCM4bbLt5nnPicKxsXLZF5r6zSM6dOSd1W9eURp3qSWTBcAkIJHDopKSkJIk5HCerv10riz9daeYaTe5oILVvqsbcA7hArmQN5Vpy++23y8aNG2Xy5MlSvHhxef/992XixImyefNmiY6Ozvafj42NlaioKImJiZHISPdOnI7sOypPNBlqbqLS0qydiYuHy5XXliRI5RD96/7Htj/l8YaDJeZIbLpjBYsXkElLR8oVZYpYa58Xg1Pbf9otT944XE7HJ6Y7pgGRcd8NkQLF8ltrnxeDU2u/+0VGdJpgMtrSqtroGhnyWT+CVA46FXNK5r67WCY//k6GYxpUf/ilewhSORycem/4DPni5TkZjt3xVAe5rX9bglQO0mv4C/e9Liu+/DHd5zrRe3xKL2lyW32yox104lCMDG47Vn5dvT3d5xoIGfnVAKnS6BoJDiVI5ZQjfxyTvk2Gyv4dB9J9rlk7E74fLmWqlGLu4eDcQ/tB5x56nqRVsFh+mbh0pBQrW1TcLKfMuXF5sFaDKiEhQT7//HMZN26cNGrUSMqXLy/Dhg0zf2rA6nK6gXr2jokZglMqPjZe+jcfYW564dzTvQEtR2YITqmj+4/J07eOyXDxgP+cPH5KBrQYkSE4pX7fvE+ev+c1iTvO+eEUzdTJLDilflmyRd4f8VmmfQX/+HPnoUyDU2rRR8vMK7O+gn+s/35TpsEp9fHYWfLbjzscb5OXlyB/++aCDMGplMngxF5TzAQdztDl+W8OeD9DcCqlrwa3fU7ijp2y0javZhaOvnNShuCU0uVlTzL3cHzu8VTLZzOdX2hG7qBbRjP3ANwQoDp37pxZahUSkr62SWhoqCxbtkwuF6dOxMumFVt9Ho89GpflcVxae7ful0N7jvg8vmfLPm5qHbTqm3WScPK0z+Nr563P8jgubTbbV6/NzTLg8Z+pC82yDTiztO/9EZ9m+Z1Pnv/KBBXhzDL990d+luV3po/41FzT4X8a7NBllln5aMwsEziB/yWcSjQBc180SDV32iJz7w//i4+JN2VFfNEHf78s2exom7zsjx0H5MDuQz6P7/ttvxza63tuAniNtQBVRESE1KtXT0aOHCn79+83wSpd4rdy5Ur5888/M/1nEhMTTYph2pfb7dq4J9vvrJu/wZG2QMxa/Oz8unqbI23xOi1o+9PCDdmnRW/P+AQQl15C3Olsg+WaPUXA0BmJCWdk65qsM3IO7z1iChHDAckiO9bvzvIrv63ZIefPkdHmVEBd6+tkZcuqbWajBziTIaLX9KxsWLKZ/nDI75v3ZvuddfN/MfdY8L9Ny37N9jtbfmDuAVgPUKnp06ebwVHrTQUHB8tLL70knTt3lty5M2/WmDFjzPrXlFfJkiXF7fJGZr8bWUSBMEfaApHwfNn/rsOi6A8n5MmT2xTgzk5oBDvIOUFrUeS9iN91QBCFVZ2g9VKz281Sr5W581i9jHuGTuOy2z0x1PQXEz4nXEztHLNDlo/7SVxaF7OzqJ4f1Dxyxl9jUda0Xh6Fud0z9wjPR708IIXVK3e5cuVk8eLFcvLkSdm7d6+sXr1azp49K2XLls30+wMHDjTF2VJe+s+4XelrS0loeNaTvhZ3N3asPV53/a01s7wgazHP6xpXcrRNXqUT69a9WmT5HS0AXaRkYcfa5GUaLGzzQMssv1O6cikJCmELdyfo3/2b72mW5Xdqt6pGfzgkNCxYmt15Q7bX8rwXEXTH/y4wKECqZnOtbt2rudmtDP6nwcDsijy3e+hmCQ3jgZMTSl1TItsHHC17NHWsPV5Xp1V1n8kXSgO31ZpVcbRNgJu54tFSWFiYFCtWTI4fPy5z586Vdu3aZfo9zbLSnQPSvtwub2SI9BjV2edx3WJUt0OGc0+V9CbJlzsGtJOQbAKKuHQKlyhoLty+3D/+bonIT0abUyrVqyjlriud6TEN7D7y8r2Sr3CU4+3yIr1hbX5XY3OOZCYoJMicHxfzZBb/u5CwEOk6pKPPrE8NKHZ8oo0Eh2SfSYL/nf6+H3rxHvNQKTMaLGnQvk6Wk0JcOpGFIuThl+/1efyauleZXePgDA1O3TvmTp/HG3W8XqIKsQOsU0IiQqT9o618Hu/Ur615CALgL7mSLS5A1mCU/ucrVqwo27dvl/79+5ui6UuXLpXAwMDLZstLLUa49PNVMm3wx3L84AnzmWZVte19k9zWvx3bhDss9liczJ48Tz4d/5UpRKy0D+4c9C9p2a0JAUOH6Y6KWnx4zlsLTN0dVSi6gPR6/i6pfXN1JuAO0zHq9b7vyuIZK1PrG5WoUFwem3yfVKhdTvKGZ790AJfO4b1HZdIDU+TH//ycWi/kqhplpe/bD0rJisVNoArO0PNh/46DMuHe19LVa6vaqJL0ndpbil5ZSPLkYQmTUxLjE2X35r0y4d7JsmvDX/U+NSB1/a015JHX7pNCxQvYbqKn6M7UG1dslVcefjt152rNdGvauaHc91xXyVeEhxtOijt+SlZ8uVqmDvpQjh04kRpob/NgS7ljQHvmHhbmHt+8MV9mjPtSTp74a0dLnW/cObCD3NSjmevnHjllzo3Lg9UA1YwZM8yyvX379kmBAgXk3//+t4waNcqcAJfbyaI7l5w8dsoMSnqTG1kw0mRXBYcSMbfhTOJZs8OiXjBy58ol4QXCzfrvwCCWy9hgim/HnTbBKq1xFB6VVyIKhjPZszjROB1/xvRHSN5gE1CPKhxJvQqLE40zCYkSe/SkyeDRei/aH7BDd+rTYPrJ46dMhmdQ3iCJLMBkzxYtlq7BqvjYBJPJo+cHDzbsSEpKktgjcRIfl2DOER2nNDMklAcb1uYeuuPlqROn5NzZ8xJViLmH9blHTLzE6W6vuXKZoFROmXvkpDk3cj6rAar/FScLAAAAAAD+wZwbTmJxPgAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwiQAUAAAAAAACrCFABAAAAAADAKgJUAAAAAAAAsIoAFQAAAAAAAKwKkBwsOTnZ/BkbG2u7KQAAAAAAXFZS5topc2/An3J0gCouLs78WbJkSdtNAQAAAADgsqRz76ioKNvNwGUuV3IODoUmJSXJ/v37JSIiQnLlyiU5JQKtAbW9e/dKZGSk7eZ4Hv3hLvSHu9Af7kJ/uAd94S70h7vQH+5Cf7hLTuwPDRdocKp48eKSOzcVguBfOTqDSk+QEiVKSE6kA1JOGZS8gP5wF/rDXegPd6E/3IO+cBf6w13oD3ehP9wlp/UHmVNwCiFQAAAAAAAAWEWACgAAAAAAAFYRoHJYcHCwDB061PwJ++gPd6E/3IX+cBf6wz3oC3ehP9yF/nAX+sNd6A/gMi6SDgAAAAAAgJyPDCoAAAAAAABYRYAKAAAAAAAAVhGgAgAAAAAAgFUEqAAAAAAAAGAVASoAAAAAAABYRYAKSOP8+fO2m+AZhw4dSvf+559/lm7dukmDBg2kY8eO8v3331trGwAg55k2bZrExMTYbgZg1b59++TkyZMZPj979qwsWbLESpsA4GLlSk5OTr7ob+P/5dy5c7Jp0yY5cOCAeX/FFVdIpUqVJDAw0HbT8F+//fabvPXWWzJ9+nT5888/bTfHE/LkyWN+10WKFJEVK1ZIkyZNpH79+lKnTh0TrFq0aJEsWLBAGjVqZLupnnDkyBEpVKiQ7WbggoD577//LqVLl5bcuXNLYmKifPnll5KUlCRNmzaVokWL2m4iRGT9+vVSo0YNHnC4QFBQkOmPa665xnZTPOnUqVOydu1ac23XMats2bLm3MiVK5ftpnmC/t7btWtn+kB/53feeae89tprEh4ebo4fPHhQihcvzljlsDNnzsgXX3whK1euTDcX1Hte7S8dtwD8jQCVH+kkYsiQIfLqq69meKIXFRUlDz/8sAwfPtxcxOG8+Ph4+eSTT2Tq1KnmolGrVi3597//Lf3797fdNE/Qv/d6odYAVcuWLaVkyZLy9ttvpx5//PHHZcOGDSZIBWcChhokvPfee815EBwcbLtJnvbLL7/IzTffbCYU+kDj22+/lVtuuUV27dplJh76gGPu3LlSu3Zt2031PA2IVK9e3Vzz4YwCBQpk+vmJEyckMjIy9b7q2LFjDrfMm/Tv/lNPPWXud0+fPm0+S5lelCpVSl5++WVp06aN5VZe/jQLfevWrfLKK6+Yc0H7RK8X8+bNk/z585vrSbFixRirHLR9+3a56aabZP/+/VK3bt3UB0vaF6tWrZISJUrInDlzpHz58rabCrgGASo/evLJJ026+ciRI83glHZQ0ovF4MGDpXv37vLcc8/Zbqqn/PDDDyZb6tNPPzU3Tlu2bDHZOjfccIPtpnk2QKVP9GbOnCnXX3996nHNOtSAyeHDh62200v9oePUwoULJSwsTLp06WKCVdWqVbPdNE/S4FRERIQMHTrUjFd6zahcubJ88MEHZsLRo0cPc/589913tpt62fvXv/6V5XF9AKVLkslKcI6eG40bN5ZOnTqlfqa3sz179pQRI0ZIdHR06oQd/qeBkK+++krGjRsnISEh5r63devW0rZtW/nwww/N53pcH0bBf/Tv/axZs0wmutKsWz1H9u7dax726RI/Mqic1aJFC3NP9d5775ngeVqxsbFy9913S0JCgnngBOAvBKj8SNM33333XTPpy4wORjowacAK/jdhwgSTLaWTic6dO0vXrl3luuuuM5kI+gRcsxTgbEBk27ZtUrhwYRME+fzzz00WQoodO3ZI1apVzZIBOBcw1D913NJz5ddffzV9o5M+DVhdeHMF/2aILF++3CxV0ptXnZDrUtiUiYcGcHWCrksz4V96jdBJhq8llZql8/XXXzPpczgrQZcv6fmhWTspS5i4ntuhQQ/NSE950PfHH3/I1VdfbcYnzcbVgJVmiegYBv/R8+Cnn36Sq666Kl2ZEQ1S7dy5U95//31zTWesck7evHll9erV5gFTZnSlgGZW6aoOAH9hbZkfxcXFmYu2L5pmy+TbOQMGDJD27dubmi7PP/+8CU7BrgoVKpi08927d8uaNWvSHdMJeFbnD/xD61D17dvX/P6XLVtmbmb13NHxSgPqcIY+OwoICDA/X/hnypJMlmk4Q4Mguuz1nXfeyfSlS/XhLF0Oo8EOfRCoY5QGc2GPFuROyVpTer3QpX7Hjx837/X80cAh/Etrfuny8LT0uqErBvTYrbfeaq1tXpUvXz5zj+uLHtPvAPgbASo/0uVJ/fr1y/QJt36mkz79DpyhT/D0Il2mTBnzu9+4caPtJnmaLqvU5WT60p81GyQtrbXTq1cva+3zmsyK2NarV8/UBdPCqy+99JLJaoMzatasaZZ/aybCmDFjzLildUVSaE0XX09kcen7Yt26dT6Pa4aILheHs3TirefIG2+8YbKpBg0aRDFuS6pUqSIfffRR6vsZM2aYbB4NICoNplPX0P9atWplzocLpQSpWLLvPM1A14d7EydONMFDXTWjL/1ZP9NSL9zrAumxxM+PdM23FrXVZTJ68U5bg0pTOjUFXZcFaHFoOGfx4sVm+dJnn31mnsJqpoh+1qBBA9tNA1xREwz2/fjjj2ayoRkIBQsWNEFcrQmmGaDaV/r57Nmz5cYbb7Td1Mue1nHRJTG6VAPudPToUbnvvvvMeaJ1JitWrGi7SZ6i9Y205pRmpmsNKs1u00x13exEjR8/3izxY9MT/9LlfLpUzNdyfD2uDz2uvPJKx9vmZRpIf/HFF809VkoQXaffGsDVc0RrFgP4GwEqP9OnRlprSm+Y0m4tqpkJWiySHfzsLsHU4p0arNItebW2S8eOHeWJJ56w3TRP0N+71jXiqao7aN2pO+64g/5wEV0Crg84dLKt2Qi6ZEaLpGtNKq2JxCQcgFvoEj7NnNKArtZe1TEKQPqVAWnngpoZDSAjAlTAf4sU6lImDVgdOnTIdnM8QWvo6NKxlIwdrTelT11Lly5tu2kAgBxMM0V0W3eWXgJ/+/LLL81GQdSTBOBmpO9Yfjq+ZMkS283Af+snTJo0yaQ+wxkXxsY1o42izwBymubNm5sCxHAPXbpPdgKQntZf7dGjh+1m4IJyMPfcc4/tZgCuQoDK8jbJTZs2td0MT9GaX0OGDEnd8UcLdGudsJtvvtkUltQtqgFkvpOZZr3BHegP9+jQoYN069bNdjMA12K8cgddMq719OAex44dMyUWAPzt7z2rgcvclClT5OGHHzZFPLVY4auvviq9e/eW22+/3dw4aaFCre3y2GOP2W6qJ2ihyLQ7Ll34Hu6iO8np0gC4A/3hHg899JDtJnhOjRo1sjyu13K4B+MVvOqrr77K8vjOnTsdawuQU1CDyo8KFCiQ5XF9inHy5EmeZjjk2muvNUGolJ1+NHNqwoQJJkilpk2bJuPGjZPNmzfbbqon6AYBUVFRqUGpEydOmJ1nLtw4QJ8uAQCQQneK000dfC3j0/qGb775JvdX8CQtl5DZJkz6+b59+6jN5iDtB73PzWq6rccZq4C/EaDyo7CwMHnwwQdNfaPM6Hbhw4cPZ1ByiG4RrunNKRfmoKAgWbdunVSuXNm83717twliaW0w+N/FpjSzdMYuvUToTS3LM9yB/rC3Q5k+0Fi2bJkJfuikQ+tOtW/fXvr37+9zW3f4R61ateTee+8191iZ+fnnn6VmzZrcX1nGeOWs2NhY6dmzp8yePduMSffff78MHTo09fd/8OBBsyEN54VzoqOj5bXXXpN27dplepyxCsiIJX5+VK1aNSlZsqTPCbbe8GqACs4oWLCgCQpqgEp399Fdfvbs2ZMaoNJj2WW94dIh8OQuej4MGzZMli5dKk2aNDFj0/PPP28+02OaraAZCRrYhf/RH+4xd+5cU2dKs24bNGggM2fONEVt9SHUxx9/LB999JEJXOm24XCG9sPWrVt9Ho+IiJBGjRo52iYvY7xyh8GDB5u5xfTp001W+rPPPmsexOqYlfK7Jy/BWRp8Wrt2rc8AVXbZVYAXkUHlR6NHj5azZ8+apxe+dm7Qgt3vvPOO423zIq0/NW/ePBMY0TXhWrRz1apVMnHiRHOB0KfgtWvXlrffftt2Uz1Nb2y1pkuhQoVsN8VT9MZWJxBdunSR//znP2Zy980335jaIfpkb9CgQfLoo4/Kk08+abupnkB/uEf16tVNJsIDDzxg3n/33Xfmd79lyxZzjW/VqpV5GMW1HF7FeOUOV155pclO1yChOnLkiLRu3Vry5ctn7ns1aEUGlbM0aKsrM3QzpszosTVr1kjjxo0dbxvgWhqgArzg5MmTyffdd19y5cqVk3v16pWcmJiY/PzzzycHBQUl58qVK7lJkybJBw8etN1Mz4iJicnwOnHiRHJgYGDyqlWrUj+DM8qWLZs8e/Zs8/O2bduSc+fOnfzxxx+nHv/kk0/MuQNn0B/uERISkrxr167U90lJSWac2r9/v3m/ZMmS5MKFC1tsIWAX45U7hIaGJu/cuTPdZ7Gxscn16tVLbtasmTmmfQMAbkYGFTzv9OnT5im4LgmAc3zVpNAhKSXlmcKRzgkNDZXffvvNZIKkvP/pp5/k6quvNu937dpldsDUGhfwP/rDPcqXL292fb3pppvM++3bt5t+iI+PN8tmtC+0fqG+B7yI8cod9Pf9wgsvmOXIaemGTC1btjRj1IYNG7ivAuBqGbd4gF9p0UK2FHXfbkAEp5xXrFgxszRm/vz5snDhQvNasGCBKT6syyx1p0X9DM7QHRU1/T/tNu5pz4vExMTUHRfhf/SHe9x9992m8PDrr79ulvFpPaq2bdum1nTRIre+dpODHbqEn8LczmG8cgcNQmW21Dg8PNzU0tP7XbiLFlAfMWKE7WYArkKRdIeRsGaX1g7RYra61rtZs2ayZMkSUyNBb57uuusu6dGjh+0mesYvv/xidmEaOXKkKeipO50ovYmtU6eOVKpUyXYTPUV/31pMNWXX0eXLl6c7rk9dr7rqKkut8x76wz20fo7WCdGxSq8Vmkn14osvph7XsWvy5MlW24j09LoeExNjuxmewXjlnhqeuglQZjRgqPfA2k9wj88//9xkGGpNYgB/YYmfw/QCoTts6PbUcNb7779vAlBVq1Y1qegvv/yy9OnTRzp27Gi2QdbjH3zwgXkP5+jETneaGT9+vHTu3FkCAwPNOUKAyll6Tujv3lcmyIcffigBAQFy2223Od42L6I/AOQUjFcAgEuFAJXDHnzwQfMUlh3K7OzEpAEq3UlGl5K1adNGRo0aZYJUasKECTJr1iyTYQVnbd68We68804TlPr0008JUAFwJc3KOXDggPn5iiuuMEub4B56S6sPnFjeB69KSEiQtWvXSoECBTLcR2nN1RkzZphlywDgVtSgspAtQnDKjm3btpmglLrxxhvl3Llz5s8UuhXvr7/+arGF3qU3UatXrzYTvsqVK5sCq3AXPV/27Nljuxn4L/rDWW+99ZYZp1ImfWl/1pp5cP7v/zPPPGOW6w8dOtR89vzzz5taO3nz5pVu3brJmTNnbDcT/8V45Vwmm9Zfa9SokVluqefHn3/+mS7ATikLZ+nD799//912M4AchQCVA08yNCNHM0QupE8y3nvvPSvt8iJNP097wxocHGxuZtO+1/6CHVpwWHef0Z1/KDjsPps2baJfXIT+cI4GPh577DFp166dyb7duHGjeenP7du3N8d0iTKcrbWjQcNatWrJZ599ZrLTddn+G2+8IW+++abpm0mTJtluJv6L8coZAwYMMA/5Dh06JFu3bjVlRRo0aEBw0KL+/ftLuXLlpEWLFvLJJ58QOAcuAgEqh59kpC1eyJMM57cKT5sh9ccff6S7YdqxY4eUKFHCUutwoZkzZ5p6YQBg0yuvvGJ2xtLC202aNDHXdX3pz6NHjzYZVC+99JLtZnqK1jTSAJVmJ3z55ZcmMKWBxC5dupjlS/qwQzffALxkxYoVZpzSlRp6zzt79myzqcMNN9zADuIW6VgVFhZmNmMqXry4PP744+YhB4DMsYufA08y1qxZY7bf1QGpYcOG8v3330upUqVsN8+TOzHlz58/9X1kZGS649pPFPB01pQpU8yuMpo9pVkIdevWlYULF0rfvn1NgJc6Cc7RbcGzQnahs+gP99BshJTdyTKjx44cOeJom7xOH/Zdd9115mediOs1JOW9ql27NstqHMR45Q76e9Zi9Cl0V2QtLfLwww+bh+Qa2IXzbrnlFunevbu5lkybNs088NCMz5o1a8p9990nd9xxh8l2A/AXiqT7UdGiRWX+/PmpN7b6q+7du7d8++23smjRIhNN10j6+fPnbTcVcNzYsWPNtrqaJaWZbXp+PP300+aircGq+++/P11AEf4VEhJibpJ8LcPQOha6dIbxyhn0h3toFrT2g2ZKpZ38Kf3933PPPbJ7925ZvHixtTZ6jdYr1IcbKfdXuoxJiz9HR0eb93pN0QcemqkO/2O8coc6derII488YjJ1LqRBKt2pOjY2ln5wUO7cuc3GGkWKFEn3+dKlS801RZcoq5MnT1pqIeA+ZFD5EU8yAN/0CZLesGoxW71Q6zmh6enbt283wVs4S7M9dUKntVwy8/PPP5v+gjPoD3ct8dNlMhoU0WCVPnxSBw8elCVLlpjsnXnz5tlupqdocfp169alBqiWL1+e7viGDRvkqquustQ672G8cocOHTrIRx99lGmASscx3eHy9ddft9I2r9K5X2Z02aW+dHm41qYC8DdqUPnR1VdfbZaNZXaR0GKrbdu2tdIuZG7Lli1StmxZ283wDC3a2axZM/OzXqS1iL0WviU4ZYdmIGhRVV80/Vwn53AG/eEemuWpS45Hjhxpfu9ay0Vf+vOzzz5rsnV0gg7n6CQ7q7//Z8+elSeffNLRNnkZ45U7DBw40KzS8OW1114zQSo4J7uFSlpuRJf5AfgbS/z8SAsVamaIr4uFLvfTmywuFu6wfv16U0eB1Gfn0p41A6Fw4cKpN7C//PILO/0AAAAAgAcRoIJnPPHEE1keP3z4sFl2SYDKuQBVr169JG/evOb9q6++Kl27dpWoqKh039PdmADANr025MmTJ/X9qlWrJDExUerVq2cyQOEe586dM4XU2ZAGXnzYqrv3FShQwGz8ozv6pdD6U7ph09SpU622EQCyQoDKQXojq4KDg203xZN0YlGtWrUMu/el0AKFWtOCAJUzdIt2X2vzU+hx3dUP/nfq1Cnp16+ffPXVV3LmzBm58cYbTcH6lAw3OIv+cA8t8NypUyf54YcfzFKmL774wtR4ScmO1lpHujtvsWLFbDcV/0VGtLMYr9xBa+G1adPGjElxcXGmXz799FNp2rSpOa5Z62zO5C579+6VoUOHEjQE0iBA5We6y8zEiRNl5cqV5smF0gCJPnHVjJ7mzZvbbqJnVKxYUQYPHmyydHwV8dQtX7lw25GyTXvap31wjo5Hb7zxhnTp0kVCQ0NNNqFOxmfNmmW7aZ5Ef7jH3XffLTt27JCnnnrK7IKlEwp94KHFiPV6ceedd5qHH1pfEu5AgMpZjFfuUL9+fROMGjVqlKl99Pzzz5vaeRqkuvnmmwlQuRBjFZARASo/evfdd6Vnz57SsWNHswNQ2p1/9CmHbi2qW4xmttsGLj29cdJtXjVg6OsiUb16dWqCOejEiRPy9NNPmx1Mjh8/bj7Lnz+/2a5aiw/ny5fPdhM9Q2t/jRs3zmSKqLVr18r111+fYTdSOIP+cA+d0M2cOdP8/o8dO2aC6PrwSbNElGZ5apFbDWLBGTqhy4qeJ1rYnkmfMxiv3EFLJOhKgHLlyqV+psFCLafw8ccfS+3atQlQOUyzCrOiG2707duXPgHSIEDlRxUqVJDHHntMHnroIZ+7aWiwZNu2bY63zYsOHDhgllleeeWVtpsCETPR00zCP/74wwQPr7nmGvP55s2bzQ1VyZIlZcWKFSZgBf/TGjq///67uXlNofXBdIcy6rg4j/5wD80I0WCHjkkqPDzcZNyWL18+dUdS3bU3Pj7ecku9IyQkxDzI8LWphi7LfPPNN5n0OYTxyh30IeycOXPMaoC0NDh17733yoQJE8ychPPC2XqrWq4iq+m2HqdPgL/xWMOP9KY1qyV8+vRVo+ZwxhVXXGG7CUhjxIgREhQUZLIOUrIL0x5r2bKl+dNXxhsuLc0cvLDQsz755qbJDvrDXZM+DXikBKgefvhhU4A4hWZ/hoWFWWyh91SuXFnq1q0rDz74YKbHNYCoASo4g/HKHXSp8aJFizIEqDSYqwGSbt26WWubV2ltQk1IaNeuXZblRQD8jQCVH1177bVmCZ+mPWdGC+JVqlTJ8XYBbqCFhqdMmZIhOJUSTNTz5oEHHiBA5RC9edWgedrlGJoRogVXNZCYQpcPwP/oD3dN+rSOZJ06dcz7sWPHpju+bNkyqVq1qqXWeZPWN9q6davP4xEREdKoUSNH2+RljFfuoAHbJUuWZHqsc+fOpp8I3DpLg0+65NVXgCq77CrAi1ji50e6q8+tt94qZcuWNZlUaWtQLViwwKw7/uabb7iJcoj2w8XQfoH/6W6Wmj1VokSJTI/v27fPLKE5ffq0423zouHDh1/U93S3Gfgf/ZFzrF692ixn0qwewIsYr4DMLV261OymqEXqM6PH1qxZI40bN3a8bYBbEaDys927d8vkyZPN9tRaAyklO0Rr72h2SOnSpW030VPrwLX+lO64pEs2fNG6YfC/6OhoUxy9YcOGPi/qt99+u+zfv9/xtgEAAOR0WudWS47o/W9K3TwAcDMCVPAM3WZXl1VqZlurVq3knnvukVtuucUEruA8/f1rBpXuhpV2CYDSYva686VmvWmfwZ5p06ZJhw4dzO5AsI/+cJ4WFtbdeNlgwz0066Bfv35mh6wzZ86Y5WUvv/yyFC5c2HbTkAbjlbPGjBljliLr+aC18XRXRd1lNGUpmdb2/Oijj9gh2UV0I4G2bduajTgA/IUAlQW6xE8n4OxsYofuGqc3TfrSGgl33XWX2d3kqquust00T9ElfLVq1TJL/XRXGd0FS4ejLVu2mIKSeo5o2nNKYWLYocHD9evXp+6yCLvoD+fpQwx9NW3aVHr27Gkm3BcG1eGsJ554Qt544w2zA6zusqg7v2pdqlmzZtluGtJgvHKW3i9p0LZ69epy3333mdpHWgtXf/9as01Xbmh93Lfeest2U/Ffen7UqFGDDQWANAhQ+VFcXJwpWKhLlZo0aWIKE/bp08cs+dMnGbq0afbs2RIZGWm7qZ61ePFiGTZsmCkqeeTIEcmfP7/tJnnKrl27pHfv3jJv3rzUIpF6brRo0UJeeeUV0tEdlHZXsrROnDhhxqiUTMNjx4453DJvoj/cQ3/XmsmpGzt8++235vfftWtXE6yi7pQdZcqUMRtpaIaI0on49ddfLwkJCekKdcMZjFfuEBISYgJRmu2p58i7776brs6tnidauJ7SCe5BgArIiKu4Hw0aNMhcDDQNfebMmXLbbbeZJU0asNKBSINXzz33nIwaNcp2Uz1HC29/9tlnZtKxatUqc5OrRW7hLL2BmjNnjklF1zoJSoNSvm524T9nz541RTpTJnxKg4Y6CX/yySdNzTA4h/5wF10O3r17dzl06JDJvn3nnXfMkjLdoUkzFXQbd905Ds5l4GrGVArth8DAQDPxJjvdeYxX7qCBqY0bN5o/9WHfhcHaPHnymOWxAOBmZFD5kd4k6dMLXRagN026W5mm3urOfkp38Ovbt69ZfwxnaDBK051nzJhh6htpHSRdIkDmFLxu+/btZgMBXQrw6quvSnh4uPlcJ336hK9SpUq2m+gp9Id7aPaHbnJy4eYa+rBJryf6sEOdPHnSUgu9Ryfa2idpa05ppo6eG/rgA85ivHKH8ePHmwevOtfQl45N06dPl3LlypmMdb3nLVSokKnJCncggwrIiAwqP9InrSlLlIoXL27qJFSoUCH1uC4N2Lt3r8UWeouuu9c+0ZsoXdp33XXX2W4S4Bo6Vq1YsUKefvppqVatmgmup81QgLPoD/fQTITM3HDDDeb10ksvmR1J4Rx9tqqFoNNmiGhNSV2+lLY+2Lp16yy10FsYr9xBV2zojn0aENSglO4krvMOPU/OnTtnAiFaJB3O0Qfgvq4hSvsFQHoEqPyoYMGCcvjw4dQiz+3atUu3c4Y+bdUC0XCGFt8OCwuT9957zzxR8oUaCfAqvYnVZce6g6IGcjW7MKsbK/gX/eEO2SWaa+aOLvODc4YOHZrhM73Hgj2MV+6gAXMtIfL111/Lzp07JSkpSYoVK2YChs2bN6dPHDZp0iTbTQByHAJUflS1alX58ccfzRMLpbvMpKXH2NnEOVozBED2mjVrZjIPdNKtQV1dTgN76A+7dIIH9weo4A6MV/bp3IL5hTt069bNdhOAHIcaVH6kmThauyJt1lRaWhxal/3pDn9wB10Dzs0UAAA5jxaw79Chg0RFRdluCmCN1mfTmqv6p7riiiukbt265k/Yo8sv//zzTzM31Dq4utIGQEYEqAAR+e2330yxW13+pxcPwKsuDNLqTW5iYqLUq1fPFLyFs+gPd9DrwoIFC8wOo7pMJm2dI90Va8KECTJkyBCrbYSYftGiw2SP2MF4ZZeORffff798/PHHZilfyo7I+sBcp3udO3eWKVOmsGu1w1577TWz/FV3H01Lz4sXX3zR7EIK4G+50/wMCxeSJUuW2G6GZ2lBVV32p0VutaCkFk5/4oknbDcLsDYBb9iwoamLp9uFHz9+3Ow4qjdQmuWpmzoQvHUO/eEeuhxfrxEPPfSQdOzY0Wy4sWnTpnT1JIcPH261jV6jE+/MXlpwWM+RlPdwBuOVOzz22GOyevVqs0v46dOn5eDBg+alP3/77bfmmH4Hzu6sOGrUKOnfv78JDlasWFGGDRtm+kizqBo1aiRr1qyx3UzAVcigsoitRe344Ycf5K233jLb7JYqVcoUT1+0aJEJVAFedffdd8uOHTvkqaeekg8++MDsMKpPwnXHHx2jtOit7s70yiuv2G6qJ9Af7tGiRQuz2YleN/TB0oABA2TGjBny3XffSfXq1c0EUHfq5VrunIiICBMI6dSpU+pnejvbs2dPGTFihERHR5vPqP/iDMYr9+wYp4GP+vXrZ3p8+fLlJnCoAUQ4o0yZMiaDqlWrVqkrNrR/dPmlbiygAUOdh8ybN892UwH30AAV7Pj555+Tc+fObbsZnjF+/PjkSpUqJUdHRyf369fP/P5VQEBA8qZNm2w3D7CqWLFiyStXrjQ/Hz16NDlXrlzJ8+fPTz2+YMGC5LJly1psobfQH+6RP3/+5K1bt6b7bMyYMebz1atXJx84cIBrucO2bduWXLt27eS77747OS4uLvVzrud2MF65Q2RkZPKPP/7o87iOV/odOCdv3rzJu3btSn2flJRkxqn9+/eb9zoXCQ8Pt9hCwH1Y4mchBT3lpWmdcI4+9W7fvr38/vvv8vzzz8t1111nu0mAa+gT1ZSsAx2ftEbFlVdemXq8fPnyLNFwEP3hLrpEJi3NFBk0aJC0bNlSVqxYYa1dXqV///X3rkWfNTNHM0NgD+OVO2h2VK9eveSnn37KcEw/e/DBB6VNmzZW2uZVFSpUMNm2KXTFhtbKSylYHxISYuqFAfhbQJqfcYlpYUi9GFSpUiXT4xoooW6Fc0aOHGlqTk2fPt0UirzrrrtMXQQAIkWKFDETCF3KpB5++OF0NVx0AqJbhsMZ9Id76HVCgyFVq1ZN93m/fv0kKSnJXE/gPF0eo4WHb7rpJrOErEuXLkz0LGG8cgddQqnnghbd1uV+2i/q0KFDcuLECXOusMzSWQMHDpSuXbvK/PnzTTBq5syZ8uijj6aOVd9//z1zEeACBKj8SJ/q6cXaVw0ErUFFgMrZi4S+tBj61KlTzZa7+lRP61awHh9ep+PVypUrpU6dOub92LFj0x1ftmxZhgk6/If+cFd9Hb1uPPDAAxmOPfnkk+Ya8vrrr1tpG0SaNWsm69atk/vuu88EQdLuIgdnMF65gwal5syZY2oaab1VrXOkNFtHC9ZfffXVtpvoObfddpupmff++++bGoYvvPCCGatS6MYb+gLwN4qk+9Ho0aPl7NmzMnTo0EyPaxFJ3ZZas3rgfzt37jTFClOeWsTFxcmHH35oglVr1641N1Z6kWAnPyAj3f1Hl23wpM8d6A8AOQXjFQDgYhGggmfoU1VNQU9Jeb799tvlpZdekqJFi8qGDRvk7bffNgErTYUGACCrJfz79u2TEiVKSHBwsO3meJbuEJc2Y2rVqlWmbzRbJDAw0GrbABvOnDkjX3zxhcloS5tBpTvHtWvXztQ/gj3nzp0zdaj27Nlj6rQ1bdqUrE/gAhRJtywhIcF2Ezzjwljst99+a9JtldYJmzRpkvzxxx+WWge4T2RkpMk8hDvQH3ZMmzbNTPZSiqXfe++9ZimZFr8NDw83S/80KALn6MOmhg0bmuBg48aNzTJ9LRCtgakmTZqYTB2KctvFeOW87du3yzXXXGNKi2hRdK2Rpy/9WZcqX3vtteY7cM4jjzwiX3/9tflZH2rofKNVq1by9NNPy8033yzVq1dn7gFcgACVJXozO2HCBLPkDO7BE1fgbyTYugv9YceIESMkd+6/bpcGDx4sCxculE8//VQ2bdokn332mXkarp/D2V159XyYNWuWFCtWzASnYmNjTemE3bt3S+HChWXUqFG2m+lpjFfOS9mY6eDBg6b49ieffGJe+rN+pgGqhx56yHYzPUWvFaVLlzY/9+3b12TdamabvnTFhmZRPf7447abCbgKRdL9HIQaNmyY2V5UU2q1mGr79u1NzSmNnGtKZ58+fWw30zO09tSFO/yw4w8AICv79+83QRD11VdfyeTJk82Tb6VFh7Uwse4KO27cOMst9Q7dEUt3w7r++uulQYMGUqhQIXOvFR0dnRpUTFuIGPCC5cuXm3pfmr12If1Md7PWDYLgnJiYmNQdLHU32M8//9yMV0p3uhwzZoxZ5gfgbwSo/EgLoE+ZMkWaN29uBqVOnTpJjx49zM4auouDvmfdsbNP87p3755aL0SXaujSjAu3PtabXgBitkbO7EYXdtAfdmj9lh07dkipUqXMsvCUyUUKzdY5evSotfZ5kS7pSwlG6SRPC3BrJkIK3aGXJX52MV45L1++fCaD0Fcxej2m34FzdCm4Bg11xYzu5qeZnmnphk26DBPA3whQ+Tmt87333pO2bdvKxo0bzRa7Whxv/fr1ZO5YoGvyL7x5AuCbZorAPegPO7p06WKynrVuoWZKaXaObqih9afi4+NNprRm8cA5utmJBqBKlixp3j/88MMmUJU2gHXhwyc4i/HKeT179jS1pnTJ8Y033mg2AVK6vG/BggXy7LPPmppIcI6ulOnXr5/pi4EDB8qjjz4qL7/8sqkVtnXrVnnsscfkX//6l+1mAq7CLn5+pMv6du3alfqULzQ01ETRdX04AOQkeoOrGaGaGQr76A9nd8XSjOelS5dKrVq1zJ9ak0qv7br8r2DBgmZ5mT4phzN0N7JmzZqZyV1mXn31VZMNrZNy2Md45ZznnntOXnzxRVPjKOVhuE71NBNUax1puRE4S1fNaNBQ+0F3HtVkhRSaxDB9+nTzwAPAXwhQ+ZEu39MLhKb/K03t/OWXXyiMDiDH0czPGjVqmJsr2Ed/OO8///mPzJ492+xMpksytC6VZk7deeedZOu4jD4M1GV/vpY6wVmMV87TB+Q6B1EanGLuYdeJEyfMg4wLrx9XXXWV7aYBrkOAyo/0CatuJZpS80hvbPWJHzWPALiNBs+z8uuvv0rnzp2ZYDiE/sg5tA80Q6R48eK2mwJYwXjlHlrjaNWqVSbzs06dOqkPyQEgpyBA5UdaEP1i6K5+AGA7oK7LATK7JKR8rn8ywXAG/ZFzkB3iDlqQ++eff5ayZcvabornMF65g/79v+WWW1Izp3TlxowZM+Smm26y3TSkyaTSGsV79uwxGzvo8vGoqCjbzQJchQAVAMDsTDZu3DhTWDUzmzZtkjZt2jDBcAj9kXMQoHIHnYxrXxCgch7jlTtoIOrkyZMyfvx4CQkJkZEjR8qGDRtk27ZttpvmWVoAXZeBd+zY0ZwHTZo0McFaHad0V0X9eeHChaZoOoC/sIsfAEBq1qxpCj6n3ar9wqd+PM9wDv0BIKdgvHKHtWvXyrx580zAXE2dOtXsbqnL/jTDEM77/vvvZfTo0ebn/v37S8uWLc3KGd1I6+zZs/Lggw+a4vVz58613VTANQhQ+dHFbhtKDSoAtj3wwANy6tQpn8dLlSrFcmQH0R/AP9O1a1cm4ZYwXrnDsWPHpESJEqnv8+XLZ+reHj16lHPDktOnT0tgYGDqEsxvvvnGBKeUfq67KmqtMAB/I0DlR6wpBpBTdOjQIcvj+fPnl27dujnWHq+jP3JOAeitW7c61hb4NnnyZNtN8CzGK/fYvHlzag0qpZlrW7Zskbi4uNTPqlataql13qO/a13CV65cObOb4u+//y7Vq1dPPa7vQ0NDrbYRcBtqUAEAAPw/CkCnoAC0u+iuilOmTJEhQ4bYbgrgGMYq99GMqbvvvlsmTJhg3g8fPlyeeeYZU3NKH24MHTpU7rjjDlPDDcBfCFD50T333JPtd/RC8fbbbzvSHgD4/9q7d6+5kdKaFrCP/nCOPuHOjmYnVK5c2ZH2IHsUrncXxitnMFa50+eff27qTGmdtrTT7uDgYLM8Vova58mTx2obATchQOXnJxlaMFJTObP6Nc+aNcvRdgHAP8WEz13oD/t0ovfRRx+Zh0xr1qyhL1y07PLXX3+Vzp070ycuwXhlF2OVffo7X7dunezcuVOSkpKkWLFiZnMB3X0UQHrUoPIj3ZlBLwi7du2SHj16mAKeupsGALjNV199leVxvamCc+gP91qyZImZ6OlT8eLFi5sNUV555RXbzfKUatWq+VzKlPK5/glnMF65E2OVe2iGVO3atc0LQNbIoPKzxMREs0ufpjWvWLFCWrduLffee6/ZZpSbJwBuQe0Kd6E/3EWLDk+bNs1M9nTL9ttuu01ef/11kxlSqVIl283znEKFCpmaLTfeeGOmxzdt2iRt2rTh/HAI45V7MFa5n+6oqDv6lS1b1nZTAFfKbbsBlztdX6xp5t99953ZWePaa6+V3r17S+nSpeXkyZO2mwcAhqabazBdU88ze2lqOpxDf7iHBjoqVqxolpVNmjTJ1BF5+eWXbTfL03RpjPaDllHI7BUdHZ1lsASXFuOVOzBW5QyMTUDWCFBZesLEUyQAbpvwrV271ufx7J6O49KiP9xjzpw5JvNZd1/SLGiK2dqnhYX1QZ8vpUqVknfeecfRNnkZ45U7MFYBuBwQoHJgiZ/WoWrRooVUqFBBNmzYYNZ/79mzR8LDw203DwCM/v37S/369X0eL1++vCxatMjRNnkZ/eEey5YtM0WGdRJet25dcw0/cuSI7WZ5WocOHUxdT1/y588v3bp1c7RNXsZ45Q6MVTmDjl26zA9A5qhB5Ue6lO/jjz+WkiVLyj333CNdunQxdRMAAEDOcurUKfnkk09MTcnVq1ebTOgXXnjBXN/ZiQmAWzBWuR8bOQC+EaDy85I+TTOvXr16loOQrtsHANt2795t6uWdOXNGGjduLJUrV7bdJE+jP9xr69atpgjx9OnT5cSJEyZLOrudzOCcvXv3ytChQ80EHc5gvHInxip3CgoKMoXrr7nmGttNAVyHAJUfde/e/aKi49RJAGCbLr+49dZbJSEhwbwPCAgwk7usltHAf+iPnEEzE2bPnm36hkmfe+jEr0aNGtT7dAjjlfsxVtnxxBNPZPr5iy++aM6PggULmvea4QbgLwSoAADSsGFDswR58uTJEhISIs8884zMmjXL7AIE59EfgG/ZTbB37twpffv2JUDlEMYrwPdqmuuuu07y5cuX7vPFixdLrVq1JCwszCQzLFy40FobAbchQAUAMDdPK1askEqVKpn38fHxpojnwYMHU5/wwTn0B3BxuyL7oscJUDmD8QrI3NixY+WNN96Qt956S5o1a5b6eWBgoMn0TDlnAPyNXfwAABIbG5tuE4e8efNKaGioxMTEWG2XV9EfgG/FihUz9TuTkpIyfa1bt852Ez2F8QrI3FNPPWUK1j/44IPSr18/OXv2rO0mAa4XYLsBAAB3mDt3rkRFRaW+14neggULZOPGjamftW3b1lLrvIf+ADJXs2ZNWbt2rbRr1y7T49llV+HSY7wCMle7dm0zXj300ENmWd8HH3zADn5AFljiBwAwS2ayw5IZ59AfgG9Lly6VU6dOyc0335zpcT22Zs0as5sc/I/xCrg4H3/8sTz++ONy+PBh2bBhA0v8gEwQoAIAXBStK6JLN+AO9AeAnILxCvjLvn37TEZV8+bNTZF0AOlRgwoAkKXExESzBXLZsmVtNwX0B2Ds3r1b3nzzTXn11VfTLSODuzBewesuHKtKlChhlicTnAIyRw0qAICZRAwbNky+++47CQoKkieffFLat28vU6dONVuG58mTR/r06WO7mZ5BfwC+LVq0SG699VZJSEgw7wMCAsy50bVrV9tN8yTGKyBzjFXAP8cSPwCADBgwQKZMmWJSznW7cK2P0KNHD/nhhx9k0KBB0qlTJzPJgDPoD8C3hg0bml3jJk+eLCEhISYIMmvWLNm/f7/tpnkS4xWQOcYq4J8jQAUAMMsvJk2aZHZZ0hT0qlWrSvfu3eXtt99mtxkL6A/At3z58plASEqBYa1vFBkZKQcPHpSCBQvabp7nMF4BmWOsAv45AlQAALMsY9euXRIdHW3eh4aGyurVq6VKlSq2m+ZJ9AeQ9a5xBw4ckCJFiqR+FhERIevXr6fWkQWMV0DmGKuAf44aVAAAs/23TjJSaJ2E8PBwq23yMvoDyNrcuXMlKioq9X1SUpIsWLAgXcF0zeiB/zFeAb4xVgH/DBlUAADzlK9Vq1YSHBxs3s+ePVuaNWuWYZeZmTNnWmqht9AfQNbnR3Z0aZkGTuB/jFdA5hirgH+ODCoAgHTr1i3de3aYsYv+AHzTDITsaK0XOIPxCsgcYxXwz5FBBQAAgMtCYmKivPrqqzJu3DhT+wUA3IixCshc9nmHAAAAgIsmdgMHDpRatWpJ/fr15YsvvjCfT506VcqUKSMTJ06UPn362G4mAI9jrAL+OTKoAAAAkGMMGDBApkyZIs2bNzdbuB8+fFh69OghP/zwgwwaNEg6deokefLksd1MAB7HWAX8c9SgAgAAQI7x6aefynvvvWd2vtKdsKpWrSrnzp0zW7drwWEAcAPGKuCfI4MKAAAAOUZQUJDs2rVLoqOjzfvQ0FBZvXq1VKlSxXbTACAVYxXwz1GDCgAAADmGbsmuE78UAQEBEh4ebrVNAHAhxirgn2OJHwAAAHIMTf7v3r27BAcHm/enT5+WBx54QMLCwtJ9b+bMmZZaCACMVcD/BwEqAAAA5BjdunVL975r167W2gIAvjBWAf8cNagAAAAAAABgFTWoAAAAAAAAYBUBKgAAAAAAAFhFgAoAAAAAAABWEaACAAAAAACAVQSoAAAAAAAAYBUBKgAA8I8cOHBAHnvsMSlfvryEhIRI0aJFpUGDBjJ58mSJj4+33TwAAADkQAG2GwAAAHKOnTt3mmBUvnz5ZPTo0VKlShUJDg6WDRs2yBtvvCHR0dHStm1b280EAABADkMGFQAAuGi9e/eWgIAAWbNmjdx2221yzTXXSNmyZaVdu3byzTffSJs2bcz3Tpw4IT179pTChQtLZGSkNGvWTNavX5/67xk2bJhUq1ZNpk+fLqVLl5aoqCi54447JC4uLvU7SUlJMmbMGClTpoyEhobKddddJ5999pmV/28AAAD4FwEqAABwUY4ePSrz5s2Thx56SMLCwjL9Tq5cucyfnTp1kkOHDsmcOXNk7dq1UqNGDbnxxhvl2LFjqd/dsWOHfPHFF/L111+b1+LFi2Xs2LGpxzU49d5778nrr78umzZtkj59+kjXrl3N9wAAAHB5YYkfAAC4KNu3b5fk5GSpWLFius8LFSokp0+fNj9r8EqzqFavXm0CVLr8T40fP94EozQDqlevXqkZUtOmTZOIiAjz/q677pIFCxbIqFGjJDEx0SwhnD9/vtSrV88c10ytZcuWyZQpU6Rx48YO/98DAADAnwhQAQCA/4kGozTY1KVLFxNY0qV8J0+elIIFC6b7XkJCgsmaSqFL+1KCU6pYsWImqJUSDNOC6y1atEj37zhz5oxUr17d7/9PAAAAcBYBKgAAcFF01z5dwrd169Z0n2tmk9I6UUqDUxps+v777zP8O7S4eorAwMB0x/TfrYGulH+H0rpWWng9rZSsLAAAAFw+CFABAICLohlRmtH0yiuvyCOPPOKzDpXWmzpw4IAppq5ZUv8flSpVMoGoPXv2sJwPAADAAwhQAQCAi/baa69JgwYNpFatWmYnvqpVq0ru3Lnlxx9/lF9//VVq1qwpzZs3N3Wj2rdvL+PGjZMKFSrI/v37TTZUhw4dzD+bHV36169fP1MYXbOqGjZsKDExMbJ8+XKzK2C3bt0c+f8FAACAMwhQAQCAi1auXDn56aefTAHzgQMHyr59+0ymk2Y8aUCpd+/eZqnet99+K08//bT06NFDDh8+LFdccYU0atRIihYtetH/rZEjR0rhwoXNbn47d+40ywM1O2vQoEF+/X8EAACA83Il63Y8AAAAAAAAgCW5bf2HAQAAAAAAAEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAABgFQEqAAAAAAAAWEWACgAAAAAAAFYRoAIAAAAAAIBVBKgAAAAAAAAgNv0f63mHRIH9h1YAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1200x800 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Example Usage\n",
"if __name__ == \"__main__\":\n",
" # Load example single-cell data\n",
" adata = sc.datasets.pbmc3k() # Example PBMC dataset\n",
" sc.pp.normalize_total(adata, target_sum=1e4)\n",
" sc.pp.log1p(adata)\n",
"\n",
" # Discover new clusters\n",
" adata = discover_new_annotations(adata, clustering_resolution=0.8, n_pcs=50)\n",
"\n",
" # Visualize discovered clusters on UMAP\n",
" fig = visualize_clusters_on_umap(adata, cluster_column=\"discovered_clusters\")\n",
" fig.show()\n",
"\n",
" # Visualize gene expression in clusters using a bubble plot\n",
" plot_bubble_matrix(adata, cluster_column=\"discovered_clusters\", top_n_genes=10)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "talk2cells",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}