[3af7d7]: / app / frontend / streamlit_app_talk2knowledgegraphs.py

Download this file

409 lines (364 with data), 16.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!/usr/bin/env python3
"""
Talk2KnowledgeGraphs: A Streamlit app for the Talk2KnowledgeGraphs graph.
"""
import os
import sys
import random
import streamlit as st
import pandas as pd
import hydra
from streamlit_feedback import streamlit_feedback
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.messages import ChatMessage
from langchain_core.tracers.context import collect_runs
from langchain.callbacks.tracers import LangChainTracer
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_ollama import OllamaEmbeddings, ChatOllama
from utils import streamlit_utils
sys.path.append("./")
from aiagents4pharma.talk2knowledgegraphs.agents.t2kg_agent import get_app
# from talk2knowledgegraphs.agents.t2kg_agent import get_app
st.set_page_config(
page_title="Talk2KnowledgeGraphs",
page_icon="🤖",
layout="wide",
initial_sidebar_state="collapsed",
)
# Initialize configuration
hydra.core.global_hydra.GlobalHydra.instance().clear()
if "config" not in st.session_state:
# Load Hydra configuration
with hydra.initialize(
version_base=None,
config_path="../../aiagents4pharma/talk2knowledgegraphs/configs",
):
cfg = hydra.compose(config_name="config", overrides=["app/frontend=default"])
cfg = cfg.app.frontend
st.session_state.config = cfg
else:
cfg = st.session_state.config
# st.logo(
# image='docs/VPE.png',
# size='large',
# link='https://github.com/VirtualPatientEngine'
# )
# Check if env variable OPENAI_API_KEY exists
if "OPENAI_API_KEY" not in os.environ:
st.error(
"Please set the OPENAI_API_KEY environment \
variable in the terminal where you run the app."
)
st.stop()
# Initialize current user
if "current_user" not in st.session_state:
st.session_state.current_user = cfg.default_user
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Initialize session state for SBML file uploader
# if "sbml_key" not in st.session_state:
# st.session_state.sbml_key = 0
# Initialize session state for pre-clinical data package uploader
if "data_package_key" not in st.session_state:
st.session_state.data_package_key = 0
# Initialize session state for patient gene expression data uploader
if "endotype_key" not in st.session_state:
st.session_state.endotype_key = 0
# Initialize session state for uploaded files
if "uploaded_files" not in st.session_state:
st.session_state.uploaded_files = []
# Make directories if not exists
os.makedirs(cfg.upload_data_dir, exist_ok=True)
# Initialize project_name for Langsmith
if "project_name" not in st.session_state:
# st.session_state.project_name = str(st.session_state.user_name) + '@' + str(uuid.uuid4())
st.session_state.project_name = "T2KG-" + str(random.randint(1000, 9999))
# Initialize run_id for Langsmith
if "run_id" not in st.session_state:
st.session_state.run_id = None
# Initialize graph
if "unique_id" not in st.session_state:
st.session_state.unique_id = random.randint(1, 1000)
# Initialize the LLM model
if "llm_model" not in st.session_state:
st.session_state.llm_model = tuple(cfg.openai_llms + cfg.ollama_llms)[0]
# Initialize the app with default LLM model for the first time
if "app" not in st.session_state:
# Initialize the app
if st.session_state.llm_model in cfg.openai_llms:
print("Using OpenAI LLM model")
st.session_state.app = get_app(
st.session_state.unique_id,
llm_model=ChatOpenAI(
model=st.session_state.llm_model, temperature=cfg.temperature
),
)
else:
print("Using Ollama LLM model")
st.session_state.app = get_app(
st.session_state.unique_id,
llm_model=ChatOllama(
model=st.session_state.llm_model, temperature=cfg.temperature
),
)
if "topk_nodes" not in st.session_state:
# Subgraph extraction settings
st.session_state.topk_nodes = cfg.reasoning_subgraph_topk_nodes
st.session_state.topk_edges = cfg.reasoning_subgraph_topk_edges
# Get the app
app = st.session_state.app
# Apply custom CSS
streamlit_utils.apply_css()
# Sidebar
with st.sidebar:
st.markdown("**âš™ī¸ Subgraph Extraction Settings**")
topk_nodes = st.slider(
"Top-K (Nodes)",
cfg.reasoning_subgraph_topk_nodes_min,
cfg.reasoning_subgraph_topk_nodes_max,
st.session_state.topk_nodes,
key="st_slider_topk_nodes",
)
st.session_state.topk_nodes = topk_nodes
topk_edges = st.slider(
"Top-K (Edges)",
cfg.reasoning_subgraph_topk_nodes_min,
cfg.reasoning_subgraph_topk_nodes_max,
st.session_state.topk_edges,
key="st_slider_topk_edges",
)
st.session_state.topk_edges = topk_edges
# Main layout of the app split into two columns
main_col1, main_col2 = st.columns([3, 7])
# First column
with main_col1:
with st.container(border=True):
# Title
st.write(
"""
<h3 style='margin: 0px; padding-bottom: 10px; font-weight: bold;'>
🤖 Talk2KnowledgeGraphs
</h3>
""",
unsafe_allow_html=True,
)
# LLM panel (Only at the front-end for now)
# llms = ["gpt-4o-mini", "gpt-4-turbo", "gpt-3.5-turbo"]
llms = tuple(cfg.openai_llms + cfg.ollama_llms)
st.selectbox(
"Pick an LLM to power the agent",
llms,
index=0,
key="llm_model",
on_change=streamlit_utils.update_llm_model,
)
# Upload files
streamlit_utils.get_uploaded_files(cfg)
# Help text
# st.button("Know more ↗",
# # icon="â„šī¸",
# on_click=streamlit_utils.help_button,
# use_container_width=False)
with st.container(border=False, height=500):
prompt = st.chat_input("Say something ...", key="st_chat_input")
# Second column
with main_col2:
# Chat history panel
with st.container(border=True, height=575):
st.write("#### đŸ’Ŧ Chat History")
# Display chat messages
for count, message in enumerate(st.session_state.messages):
if message["type"] == "message":
with st.chat_message(
message["content"].role,
avatar="🤖" if message["content"].role != "user" else "👩đŸģ‍đŸ’ģ",
):
st.markdown(message["content"].content)
st.empty()
elif message["type"] == "plotly":
streamlit_utils.render_plotly(
message["content"],
key=message["key"],
title=message["title"],
# tool_name=message["tool_name"],
save_chart=False,
)
st.empty()
elif message["type"] == "toggle":
streamlit_utils.render_toggle(
key=message["key"],
toggle_text=message["content"],
toggle_state=message["toggle_state"],
save_toggle=False,
)
st.empty()
elif message["type"] == "dataframe":
streamlit_utils.render_table(
message["content"],
key=message["key"],
# tool_name=message["tool_name"],
save_table=False,
)
st.empty()
elif message["type"] == "graph":
streamlit_utils.render_graph(
message["content"], key=message["key"], save_graph=False
)
st.empty()
# When the user asks a question
if prompt:
# Display user prompt
prompt_msg = ChatMessage(prompt, role="user")
st.session_state.messages.append({"type": "message", "content": prompt_msg})
with st.chat_message("user", avatar="👩đŸģ‍đŸ’ģ"):
st.markdown(prompt)
st.empty()
# Auxiliary visualization-related variables
graphs_visuals = []
with st.chat_message("assistant", avatar="🤖"):
# with st.spinner("Fetching response ..."):
with st.spinner():
# Get chat history
history = [
(m["content"].role, m["content"].content)
for m in st.session_state.messages
if m["type"] == "message"
]
# Convert chat history to ChatMessage objects
chat_history = [
SystemMessage(content=m[1])
if m[0] == "system"
else HumanMessage(content=m[1])
if m[0] == "human"
else AIMessage(content=m[1])
for m in history
]
# Prepare LLM and embedding model for updating the agent
if st.session_state.llm_model in cfg.openai_llms:
llm_model = ChatOpenAI(
model=st.session_state.llm_model,
temperature=cfg.temperature,
)
emb_model = OpenAIEmbeddings(model=cfg.openai_embeddings[0])
else:
llm_model = ChatOllama(
model=st.session_state.llm_model,
temperature=cfg.temperature,
)
emb_model = OllamaEmbeddings(model=cfg.ollama_embeddings[0])
# Create config for the agent
config = {"configurable": {"thread_id": st.session_state.unique_id}}
app.update_state(
config,
{
"llm_model": llm_model,
"embedding_model": emb_model,
"uploaded_files": st.session_state.uploaded_files,
"topk_nodes": st.session_state.topk_nodes,
"topk_edges": st.session_state.topk_edges,
"dic_source_graph": [
{
"name": st.session_state.config["kg_name"],
"kg_pyg_path": st.session_state.config["kg_pyg_path"],
"kg_text_path": st.session_state.config["kg_text_path"],
}
],
},
)
# Update the agent states
current_state = app.get_state(config)
ERROR_FLAG = False
with collect_runs() as cb:
# Add Langsmith tracer
tracer = LangChainTracer(
project_name=st.session_state.project_name
)
# Get response from the agent
response = app.invoke(
{"messages": [HumanMessage(content=prompt)]},
config=config | {"callbacks": [tracer]},
)
st.session_state.run_id = cb.traced_runs[-1].id
current_state = app.get_state(config)
# Add response to chat history
assistant_msg = ChatMessage(
response["messages"][-1].content, role="assistant"
)
st.session_state.messages.append(
{"type": "message", "content": assistant_msg}
)
# Display the response in the chat
st.markdown(response["messages"][-1].content)
st.empty()
# Get the current state of the graph
current_state = app.get_state(config)
# # Get the messages from the current state
# # and reverse the order
reversed_messages = current_state.values["messages"][::-1]
# Loop through the reversed messages until a
# HumanMessage is found i.e. the last message
# from the user. This is to display the results
# of the tool calls made by the agent since the
# last message from the user.
for msg in reversed_messages:
# print (msg)
# Break the loop if the message is a HumanMessage
# i.e. the last message from the user
if isinstance(msg, HumanMessage):
break
# Skip the message if it is an AIMessage
# i.e. a message from the agent. An agent
# may make multiple tool calls before the
# final response to the user.
if isinstance(msg, AIMessage):
continue
# Work on the message if it is a ToolMessage
# These may contain additional visuals that
# need to be displayed to the user.
# print("ToolMessage", msg)
# Skip the Tool message if it is an error message
if msg.status == "error":
continue
# Create a unique message id to identify the tool call
# msg.name is the name of the tool
# msg.tool_call_id is the unique id of the tool call
# st.session_state.run_id is the unique id of the run
uniq_msg_id = (
msg.name
+ "_"
+ msg.tool_call_id
+ "_"
+ str(st.session_state.run_id)
)
if msg.name in ["subgraph_extraction"]:
print(
"-",
len(current_state.values["dic_extracted_graph"]),
"subgraph_extraction",
)
# Add the graph into the visuals list
latest_graph = current_state.values["dic_extracted_graph"][
-1
]
if current_state.values["dic_extracted_graph"]:
graphs_visuals.append(
{
"content": latest_graph["graph_dict"],
"key": "subgraph_" + uniq_msg_id,
}
)
# Visualize the graph
if len(graphs_visuals) > 0:
for count, graph in enumerate(graphs_visuals):
streamlit_utils.render_graph(
graph_dict=graph["content"], key=graph["key"], save_graph=True
)
# Collect feedback and display the thumbs feedback
if st.session_state.get("run_id"):
feedback = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional] Please provide an explanation",
on_submit=streamlit_utils.submit_feedback,
key=f"feedback_{st.session_state.run_id}",
)