a b/app/frontend/streamlit_app_talk2cells.py
1
#!/usr/bin/env python3
2
3
'''
4
Talk2Cells: A Streamlit app for the Talk2Cells graph.
5
'''
6
7
import os
8
import sys
9
import random
10
import streamlit as st
11
from streamlit_feedback import streamlit_feedback
12
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
13
from langchain_core.messages import ChatMessage
14
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
15
from langchain_core.tracers.context import collect_runs
16
from langchain.callbacks.tracers import LangChainTracer
17
from langsmith import Client
18
sys.path.append('./')
19
from aiagents4pharma.talk2cells.agents.scp_agent import get_app
20
21
st.set_page_config(page_title="Talk2Cells", page_icon="🤖", layout="wide")
22
23
# Check if env variable OPENAI_API_KEY exists
24
if "OPENAI_API_KEY" not in os.environ:
25
    st.error("Please set the OPENAI_API_KEY environment \
26
        variable in the terminal where you run the app.")
27
    st.stop()
28
29
# Create a chat prompt template
30
prompt = ChatPromptTemplate.from_messages([
31
        ("system", "Welcome to Talk2Cells!"),
32
        MessagesPlaceholder(variable_name='chat_history', optional=True),
33
        ("human", "{input}"),
34
        ("placeholder", "{agent_scratchpad}"),
35
])
36
37
# Initialize chat history
38
if "messages" not in st.session_state:
39
    st.session_state.messages = []
40
41
# Initialize project_name for Langsmith
42
if "project_name" not in st.session_state:
43
    # st.session_state.project_name = str(st.session_state.user_name) + '@' + str(uuid.uuid4())
44
    st.session_state.project_name = 'Talk2Cells-' + str(random.randint(1000, 9999))
45
46
# Initialize run_id for Langsmith
47
if "run_id" not in st.session_state:
48
    st.session_state.run_id = None
49
50
# Initialize graph
51
if "unique_id" not in st.session_state:
52
    st.session_state.unique_id = random.randint(1, 1000)
53
if "app" not in st.session_state:
54
    st.session_state.app = get_app(st.session_state.unique_id)
55
56
# Get the app
57
app = st.session_state.app
58
59
def _submit_feedback(user_response):
60
    '''
61
    Function to submit feedback to the developers.
62
    '''
63
    client = Client()
64
    client.create_feedback(
65
        st.session_state.run_id,
66
        key="feedback",
67
        score=1 if user_response['score'] == "👍" else 0,
68
        comment=user_response['text']
69
    )
70
    st.info("Your feedback is on its way to the developers. Thank you!", icon="🚀")
71
72
# Main layout of the app split into two columns
73
main_col1, main_col2 = st.columns([3, 7])
74
# First column
75
with main_col1:
76
    with st.container(border=True):
77
        # Title
78
        st.write("""
79
            <h3 style='margin: 0px; padding-bottom: 10px; font-weight: bold;'>
80
            🤖 Talk2Cells
81
            </h3>
82
            """,
83
            unsafe_allow_html=True)
84
85
        # LLM panel (Only at the front-end for now)
86
        llms = ["gpt-4o-mini", "gpt-4-turbo", "gpt-3.5-turbo"]
87
        llm_option = st.selectbox(
88
            "Pick an LLM to power the agent",
89
            llms,
90
            index=0,
91
            key="st_selectbox_llm"
92
        )
93
94
        # Upload files (placeholder)
95
        # uploaded_file = st.file_uploader(
96
        #     "Upload sequencing data",
97
        #     accept_multiple_files=False,
98
        #     type=["h5ad"],
99
        #     help='''Upload a single h5ad file containing the sequencing data.
100
        #     The file should be in the AnnData format.'''
101
        #     )
102
103
    with st.container(border=False, height=500):
104
        prompt = st.chat_input("Say something ...", key="st_chat_input")
105
106
# Second column
107
with main_col2:
108
    # Chat history panel
109
    with st.container(border=True, height=575):
110
        st.write("#### 💬 Chat History")
111
112
        # Display chat messages
113
        for count, message in enumerate(st.session_state.messages):
114
            with st.chat_message(message["content"].role,
115
                                    avatar="🤖" 
116
                                    if message["content"].role != 'user'
117
                                    else "👩🏻‍💻"):
118
                st.markdown(message["content"].content)
119
                st.empty()
120
121
        # When the user asks a question
122
        if prompt:
123
            # Create a key 'uploaded_file' to read the uploaded file
124
            # if uploaded_file:
125
            #     st.session_state.article_pdf = uploaded_file.read().decode("utf-8")
126
127
            # Display user prompt
128
            prompt_msg = ChatMessage(prompt, role="user")
129
            st.session_state.messages.append(
130
                {
131
                    "type": "message",
132
                    "content": prompt_msg
133
                }
134
            )
135
            with st.chat_message("user", avatar="👩🏻‍💻"):
136
                st.markdown(prompt)
137
                st.empty()
138
139
            with st.chat_message("assistant", avatar="🤖"):
140
                # with st.spinner("Fetching response ..."):
141
                with st.spinner():
142
                    # Get chat history
143
                    history = [(m["content"].role, m["content"].content)
144
                                            for m in st.session_state.messages
145
                                            if m["type"] == "message"]
146
                    # Convert chat history to ChatMessage objects
147
                    chat_history = [
148
                        SystemMessage(content=m[1]) if m[0] == "system" else
149
                        HumanMessage(content=m[1]) if m[0] == "human" else
150
                        AIMessage(content=m[1])
151
                        for m in history
152
                    ]
153
154
                    # Create config for the agent
155
                    config = {"configurable": {"thread_id": st.session_state.unique_id}}
156
157
                    # Update the agent state with the selected LLM model
158
                    current_state = app.get_state(config)
159
                    # app.update_state(config, {"llm_model": llm_option})
160
                    current_state = app.get_state(config)
161
                    # st.markdown(current_state.values["llm_model"])
162
163
                    # Set the environment variable AIAGENTS4PHARMA_LLM_MODEL
164
                    os.environ["AIAGENTS4PHARMA_LLM_MODEL"] = llm_option
165
166
                    # # Get response from the agent
167
                    # response = app.invoke(
168
                    #     {"messages": [HumanMessage(content=prompt)]},
169
                    #     config=config
170
                    # )
171
                    ERROR_FLAG = False
172
                    with collect_runs() as cb:
173
                        # Add Langsmith tracer
174
                        tracer = LangChainTracer(
175
                            project_name=st.session_state.project_name
176
                            )
177
                        # Get response from the agent
178
                        response = app.invoke(
179
                            {"messages": [HumanMessage(content=prompt)]},
180
                            config=config|{"callbacks": [tracer]}
181
                        )
182
                        st.session_state.run_id = cb.traced_runs[-1].id
183
                    # Print the response
184
                    # print (response)
185
186
                    # Add assistant response to chat history
187
                    assistant_msg = ChatMessage(response["messages"][-1].content,
188
                                                role="assistant")
189
                    st.session_state.messages.append({
190
                                    "type": "message",
191
                                    "content": assistant_msg
192
                                })
193
                    # Display the response in the chat
194
                    st.markdown(response["messages"][-1].content)
195
                    st.empty()
196
        # Collect feedback and display the thumbs feedback
197
        if st.session_state.get("run_id"):
198
            feedback = streamlit_feedback(
199
                feedback_type="thumbs",
200
                optional_text_label="[Optional] Please provide an explanation",
201
                on_submit=_submit_feedback,
202
                key=f"feedback_{st.session_state.run_id}"
203
            )