|
a |
|
b/app/frontend/streamlit_app.py |
|
|
1 |
#!/usr/bin/env python3 |
|
|
2 |
|
|
|
3 |
''' |
|
|
4 |
Talk2BioModels: Interactive BioModel Simulation Tool |
|
|
5 |
''' |
|
|
6 |
|
|
|
7 |
import os |
|
|
8 |
import sys |
|
|
9 |
import random |
|
|
10 |
import streamlit as st |
|
|
11 |
import pandas as pd |
|
|
12 |
import plotly.express as px |
|
|
13 |
sys.path.append('./') |
|
|
14 |
from aiagents4pharma.talk2biomodels.tools.ask_question import AskQuestionTool |
|
|
15 |
from aiagents4pharma.talk2biomodels.tools.simulate_model import SimulateModelTool |
|
|
16 |
from aiagents4pharma.talk2biomodels.tools.model_description import ModelDescriptionTool |
|
|
17 |
from aiagents4pharma.talk2biomodels.tools.search_models import SearchModelsTool |
|
|
18 |
from aiagents4pharma.talk2biomodels.tools.custom_plotter import CustomPlotterTool |
|
|
19 |
from aiagents4pharma.talk2biomodels.tools.fetch_parameters import FetchParametersTool |
|
|
20 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage |
|
|
21 |
from aiagents4pharma.talk2biomodels.tools.get_annotation import GetAnnotationTool |
|
|
22 |
from langchain.agents import create_tool_calling_agent, AgentExecutor |
|
|
23 |
from langchain_openai import ChatOpenAI |
|
|
24 |
from langchain_core.messages import ChatMessage |
|
|
25 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
|
26 |
|
|
|
27 |
# Set the streamlit session key for the sys bio model |
|
|
28 |
ST_SYS_BIOMODEL_KEY = "last_model_object" |
|
|
29 |
ST_SESSION_DF = "last_annotations_df" |
|
|
30 |
|
|
|
31 |
st.set_page_config(page_title="Talk2BioModels", page_icon="🤖", layout="wide") |
|
|
32 |
st.logo(image='./app/frontend/VPE.png', link="https://www.github.com/virtualpatientengine") |
|
|
33 |
|
|
|
34 |
# Define tools and their metadata |
|
|
35 |
simulate_model = SimulateModelTool(st_session_key=ST_SYS_BIOMODEL_KEY) |
|
|
36 |
ask_question = AskQuestionTool(st_session_key=ST_SYS_BIOMODEL_KEY) |
|
|
37 |
with open('./app/frontend/prompts/prompt_ask_question.txt', 'r', encoding='utf-8') as file: |
|
|
38 |
prompt_content = file.read() |
|
|
39 |
ask_question.metadata = { |
|
|
40 |
"prompt": prompt_content |
|
|
41 |
} |
|
|
42 |
# plot_figure = PlotImageTool(st_session_key=ST_SYS_BIOMODEL_KEY) |
|
|
43 |
model_description = ModelDescriptionTool(st_session_key=ST_SYS_BIOMODEL_KEY) |
|
|
44 |
with open('./app/frontend/prompts/prompt_model_description.txt', 'r', encoding='utf-8') as file: |
|
|
45 |
prompt_content = file.read() |
|
|
46 |
model_description.metadata = { |
|
|
47 |
"prompt": prompt_content |
|
|
48 |
} |
|
|
49 |
search_models = SearchModelsTool() |
|
|
50 |
custom_plotter = CustomPlotterTool(st_session_key=ST_SYS_BIOMODEL_KEY) |
|
|
51 |
fetch_parameters = FetchParametersTool(st_session_key=ST_SYS_BIOMODEL_KEY) |
|
|
52 |
get_annotation = GetAnnotationTool(st_session_key=ST_SYS_BIOMODEL_KEY, |
|
|
53 |
st_session_df=ST_SESSION_DF) |
|
|
54 |
|
|
|
55 |
tools = [simulate_model, |
|
|
56 |
ask_question, |
|
|
57 |
# plot_figure, |
|
|
58 |
custom_plotter, |
|
|
59 |
fetch_parameters, |
|
|
60 |
model_description, |
|
|
61 |
search_models, |
|
|
62 |
get_annotation] |
|
|
63 |
|
|
|
64 |
# Load the prompt for the main agent |
|
|
65 |
with open('./app/frontend/prompts/prompt_general.txt', 'r', encoding='utf-8') as file: |
|
|
66 |
prompt_content = file.read() |
|
|
67 |
|
|
|
68 |
# Create a chat prompt template |
|
|
69 |
prompt = ChatPromptTemplate.from_messages([ |
|
|
70 |
("system", prompt_content), |
|
|
71 |
MessagesPlaceholder(variable_name='chat_history', optional=True), |
|
|
72 |
("human", "{input}"), |
|
|
73 |
("placeholder", "{agent_scratchpad}"), |
|
|
74 |
]) |
|
|
75 |
|
|
|
76 |
# Initialize chat history |
|
|
77 |
if "messages" not in st.session_state: |
|
|
78 |
st.session_state.messages = [] |
|
|
79 |
|
|
|
80 |
# Initialize the OpenAI model |
|
|
81 |
llm = ChatOpenAI(temperature=0.0, |
|
|
82 |
model="gpt-4o-mini", |
|
|
83 |
streaming=True, |
|
|
84 |
api_key=os.getenv("OPENAI_API_KEY")) |
|
|
85 |
|
|
|
86 |
# Create an agent |
|
|
87 |
agent = create_tool_calling_agent(llm, tools, prompt) |
|
|
88 |
|
|
|
89 |
# Create an agent executor |
|
|
90 |
agent_executor = AgentExecutor(agent=agent, |
|
|
91 |
tools=tools, |
|
|
92 |
verbose=True, |
|
|
93 |
return_intermediate_steps=True) |
|
|
94 |
|
|
|
95 |
def render_plotly(df_simulation_results: pd.DataFrame) -> px.line: |
|
|
96 |
""" |
|
|
97 |
Function to visualize the dataframe using Plotly. |
|
|
98 |
|
|
|
99 |
Args: |
|
|
100 |
df: pd.DataFrame: The input dataframe |
|
|
101 |
""" |
|
|
102 |
df_simulation_results = df_simulation_results.melt(id_vars='Time', |
|
|
103 |
var_name='Parameters', |
|
|
104 |
value_name='Concentration') |
|
|
105 |
fig = px.line(df_simulation_results, |
|
|
106 |
x='Time', |
|
|
107 |
y='Concentration', |
|
|
108 |
color='Parameters', |
|
|
109 |
title="Concentration of parameters over time", |
|
|
110 |
height=500, |
|
|
111 |
width=600 |
|
|
112 |
) |
|
|
113 |
return fig |
|
|
114 |
|
|
|
115 |
def get_random_spinner_text(): |
|
|
116 |
""" |
|
|
117 |
Function to get a random spinner text. |
|
|
118 |
""" |
|
|
119 |
spinner_texts = [ |
|
|
120 |
"Your request is being carefully prepared. one moment, please.", |
|
|
121 |
"Working on that for you now—thanks for your patience.", |
|
|
122 |
"Hold tight! I’m getting that ready for you.", |
|
|
123 |
"I’m on it! Just a moment, please.", |
|
|
124 |
"Running algorithms... your answer is on its way.", |
|
|
125 |
"Processing your request. Please hold on...", |
|
|
126 |
"One moment while I work on that for you...", |
|
|
127 |
"Fetching the details for you. This won’t take long.", |
|
|
128 |
"Sit back while I take care of this for you."] |
|
|
129 |
return random.choice(spinner_texts) |
|
|
130 |
|
|
|
131 |
# Main layout of the app split into two columns |
|
|
132 |
main_col1, main_col2 = st.columns([3, 7]) |
|
|
133 |
# First column |
|
|
134 |
with main_col1: |
|
|
135 |
with st.container(border=True): |
|
|
136 |
# Title |
|
|
137 |
st.write(""" |
|
|
138 |
<h3 style='margin: 0px; padding-bottom: 10px; font-weight: bold;'> |
|
|
139 |
🤖 Talk2BioModels |
|
|
140 |
</h3> |
|
|
141 |
""", |
|
|
142 |
unsafe_allow_html=True) |
|
|
143 |
|
|
|
144 |
# LLM panel |
|
|
145 |
llms = ["gpt-4o-mini", "gpt-4-turbo", "gpt-3.5-turbo"] |
|
|
146 |
llm_option = st.selectbox( |
|
|
147 |
"Pick an LLM to power the agent", |
|
|
148 |
llms, |
|
|
149 |
index=0, |
|
|
150 |
key="st_selectbox_llm" |
|
|
151 |
) |
|
|
152 |
|
|
|
153 |
# Upload files |
|
|
154 |
uploaded_file = st.file_uploader( |
|
|
155 |
"Upload an XML/SBML file", |
|
|
156 |
accept_multiple_files=False, |
|
|
157 |
type=["xml", "sbml"], |
|
|
158 |
help='''Upload an XML/SBML file to simulate a biological model, \ |
|
|
159 |
and ask questions about the simulation results.''' |
|
|
160 |
) |
|
|
161 |
|
|
|
162 |
with st.container(border=False, height=500): |
|
|
163 |
prompt = st.chat_input("Say something ...", key="st_chat_input") |
|
|
164 |
|
|
|
165 |
# Second column |
|
|
166 |
with main_col2: |
|
|
167 |
# Chat history panel |
|
|
168 |
with st.container(border=True, height=575): |
|
|
169 |
st.write("#### 💬 Chat History") |
|
|
170 |
|
|
|
171 |
# Display chat messages |
|
|
172 |
for count, message in enumerate(st.session_state.messages): |
|
|
173 |
if message["type"] == "message": |
|
|
174 |
with st.chat_message(message["content"].role, |
|
|
175 |
avatar="🤖" |
|
|
176 |
if message["content"].role != 'user' |
|
|
177 |
else "👩🏻💻"): |
|
|
178 |
st.markdown(message["content"].content) |
|
|
179 |
st.empty() |
|
|
180 |
elif message["type"] == "plotly": |
|
|
181 |
st.plotly_chart(render_plotly(message["content"]), |
|
|
182 |
use_container_width = True, |
|
|
183 |
key=f"plotly_{count}") |
|
|
184 |
elif message["type"] == "dataframe": |
|
|
185 |
st.dataframe(message["content"], |
|
|
186 |
use_container_width = True, |
|
|
187 |
key=f"dataframe_{count}") |
|
|
188 |
if prompt: |
|
|
189 |
if ST_SYS_BIOMODEL_KEY not in st.session_state: |
|
|
190 |
st.session_state[ST_SYS_BIOMODEL_KEY] = None |
|
|
191 |
|
|
|
192 |
if ST_SESSION_DF not in st.session_state: |
|
|
193 |
st.session_state[ST_SESSION_DF] = None |
|
|
194 |
|
|
|
195 |
# Create a key 'uploaded_file' to read the uploaded file |
|
|
196 |
if uploaded_file: |
|
|
197 |
st.session_state.sbml_file_path = uploaded_file.read().decode("utf-8") |
|
|
198 |
|
|
|
199 |
# Display user prompt |
|
|
200 |
prompt_msg = ChatMessage(prompt, role="user") |
|
|
201 |
st.session_state.messages.append( |
|
|
202 |
{ |
|
|
203 |
"type": "message", |
|
|
204 |
"content": prompt_msg |
|
|
205 |
} |
|
|
206 |
) |
|
|
207 |
with st.chat_message("user", avatar="👩🏻💻"): |
|
|
208 |
st.markdown(prompt) |
|
|
209 |
st.empty() |
|
|
210 |
|
|
|
211 |
with st.chat_message("assistant", avatar="🤖"): |
|
|
212 |
# with st.spinner("Fetching response ..."): |
|
|
213 |
with st.spinner(get_random_spinner_text()): |
|
|
214 |
history = [(m["content"].role, m["content"].content) |
|
|
215 |
for m in st.session_state.messages |
|
|
216 |
if m["type"] == "message"] |
|
|
217 |
chat_history = [ |
|
|
218 |
SystemMessage(content=m[1]) if m[0] == "system" else |
|
|
219 |
HumanMessage(content=m[1]) if m[0] == "human" else |
|
|
220 |
AIMessage(content=m[1]) |
|
|
221 |
for m in history |
|
|
222 |
] |
|
|
223 |
# Call the agent |
|
|
224 |
response = agent_executor.invoke({ |
|
|
225 |
"input": prompt, |
|
|
226 |
"chat_history": chat_history |
|
|
227 |
}) |
|
|
228 |
|
|
|
229 |
# Ensure response["output"] is a valid string |
|
|
230 |
output_content = response.get("output", "") |
|
|
231 |
|
|
|
232 |
# If output is a dictionary (like an error message), handle it properly |
|
|
233 |
if isinstance(output_content, dict): |
|
|
234 |
# Extract error message or default message |
|
|
235 |
output_content = str(output_content.get('error', 'Unknown error occurred')) |
|
|
236 |
|
|
|
237 |
# Add assistant response to chat history |
|
|
238 |
assistant_msg = ChatMessage(content=output_content, role="assistant") |
|
|
239 |
st.session_state.messages.append({ |
|
|
240 |
"type": "message", |
|
|
241 |
"content": assistant_msg |
|
|
242 |
}) |
|
|
243 |
|
|
|
244 |
# Display the response |
|
|
245 |
st.markdown(output_content) |
|
|
246 |
st.empty() |
|
|
247 |
print(response) |
|
|
248 |
if "intermediate_steps" in response and len(response["intermediate_steps"]) > 0: |
|
|
249 |
for r in response["intermediate_steps"]: |
|
|
250 |
# Inside the agent_executor chain: |
|
|
251 |
if r[0].tool == 'get_annotation': |
|
|
252 |
annotations_df = st.session_state[ST_SESSION_DF] |
|
|
253 |
# Display the DataFrame in Streamlit frontend |
|
|
254 |
st.dataframe(annotations_df, use_container_width=True) |
|
|
255 |
# Append the DataFrame to chat history (if necessary) |
|
|
256 |
st.session_state.messages.append({ |
|
|
257 |
"type": "dataframe", |
|
|
258 |
"content": annotations_df |
|
|
259 |
}) |
|
|
260 |
|
|
|
261 |
elif r[0].tool == 'simulate_model': |
|
|
262 |
model_obj = st.session_state[ST_SYS_BIOMODEL_KEY] |
|
|
263 |
df_sim_results = model_obj.simulation_results |
|
|
264 |
# Add data to the chat history |
|
|
265 |
st.session_state.messages.append({ |
|
|
266 |
"type": "dataframe", |
|
|
267 |
"content": df_sim_results |
|
|
268 |
}) |
|
|
269 |
st.dataframe(df_sim_results, use_container_width=True) |
|
|
270 |
# Add the plotly chart to the chat history |
|
|
271 |
st.session_state.messages.append({ |
|
|
272 |
"type": "plotly", |
|
|
273 |
"content": df_sim_results |
|
|
274 |
}) |
|
|
275 |
# Display the plotly chart |
|
|
276 |
st.plotly_chart(render_plotly(df_sim_results), use_container_width=True) |
|
|
277 |
|
|
|
278 |
elif r[0].tool == 'custom_plotter': |
|
|
279 |
model_obj = st.session_state[ST_SYS_BIOMODEL_KEY] |
|
|
280 |
# Prepare df_subset for custom_simulation_results |
|
|
281 |
df_subset = pd.DataFrame() |
|
|
282 |
if len(st.session_state.custom_simulation_results) > 0: |
|
|
283 |
custom_headers = st.session_state.custom_simulation_results |
|
|
284 |
custom_headers = list(custom_headers) |
|
|
285 |
# Add Time column to the custom headers |
|
|
286 |
if 'Time' not in custom_headers: |
|
|
287 |
custom_headers = ['Time'] + custom_headers |
|
|
288 |
|
|
|
289 |
# Make df_subset with only the custom headers |
|
|
290 |
df_subset = model_obj.simulation_results[custom_headers] |
|
|
291 |
# Add data to the chat history |
|
|
292 |
st.session_state.messages.append({ |
|
|
293 |
"type": "dataframe", |
|
|
294 |
"content": df_subset |
|
|
295 |
}) |
|
|
296 |
st.dataframe(df_subset, use_container_width=True) |
|
|
297 |
# Add the plotly chart to the chat history |
|
|
298 |
st.session_state.messages.append({ |
|
|
299 |
"type": "plotly", |
|
|
300 |
"content": df_subset |
|
|
301 |
}) |
|
|
302 |
# Display the plotly chart |
|
|
303 |
st.plotly_chart(render_plotly(df_subset), use_container_width=True) |
|
|
304 |
else: |
|
|
305 |
# If intermediate_steps is empty, show a message |
|
|
306 |
st.warning("No intermediate steps were found in the response.") |
|
|
307 |
|