#!/usr/bin/env python3
"""
This tool is used to return recommendations for a single paper.
"""
import logging
from typing import Annotated, Any, Optional
from langchain_core.messages import ToolMessage
from langchain_core.tools import tool
from langchain_core.tools.base import InjectedToolCallId
from langgraph.types import Command
from pydantic import BaseModel, Field
from .utils.single_helper import SinglePaperRecData
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SinglePaperRecInput(BaseModel):
"""Input schema for single paper recommendation tool."""
paper_id: str = Field(
description="Semantic Scholar Paper ID to get recommendations for (40-character string)"
)
limit: int = Field(
default=5,
description="Maximum number of recommendations to return",
ge=1,
le=500,
)
year: Optional[str] = Field(
default=None,
description="Year range in format: YYYY for specific year, "
"YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
)
tool_call_id: Annotated[str, InjectedToolCallId]
model_config = {"arbitrary_types_allowed": True}
@tool(args_schema=SinglePaperRecInput, parse_docstring=True)
def get_single_paper_recommendations(
paper_id: str,
tool_call_id: Annotated[str, InjectedToolCallId],
limit: int = 10,
year: Optional[str] = None,
) -> Command[Any]:
"""
Get recommendations for a single paper using its Semantic Scholar ID.
No other ID types are supported.
Args:
paper_id (str): The Semantic Scholar Paper ID to get recommendations for.
tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
limit (int, optional): The maximum number of recommendations to return. Defaults to 5.
year (str, optional): Year range for papers.
Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
Returns:
Dict[str, Any]: The recommendations and related information.
"""
# Create recommendation data object to organize variables
rec_data = SinglePaperRecData(paper_id, limit, year, tool_call_id)
# Process the recommendations
results = rec_data.process_recommendations()
return Command(
update={
"papers": results["papers"],
"last_displayed_papers": "papers",
"messages": [
ToolMessage(
content=results["content"],
tool_call_id=tool_call_id,
artifact=results["papers"],
)
],
}
)