Download this file

78 lines (65 with data), 2.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
"""
This tool is used to search for academic papers on Semantic Scholar.
"""
import logging
from typing import Annotated, Any, Optional
from langchain_core.messages import ToolMessage
from langchain_core.tools import tool
from langchain_core.tools.base import InjectedToolCallId
from langgraph.types import Command
from pydantic import BaseModel, Field
from .utils.search_helper import SearchData
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SearchInput(BaseModel):
"""Input schema for the search papers tool."""
query: str = Field(
description="Search query string to find academic papers."
"Be specific and include relevant academic terms."
)
limit: int = Field(
default=10, description="Maximum number of results to return", ge=1, le=100
)
year: Optional[str] = Field(
default=None,
description="Year range in format: YYYY for specific year, "
"YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
)
tool_call_id: Annotated[str, InjectedToolCallId]
@tool("search_tool", args_schema=SearchInput, parse_docstring=True)
def search_tool(
query: str,
tool_call_id: Annotated[str, InjectedToolCallId],
limit: int = 5,
year: Optional[str] = None,
) -> Command[Any]:
"""
Search for academic papers on Semantic Scholar.
Args:
query (str): The search query string to find academic papers.
tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
limit (int, optional): The maximum number of results to return. Defaults to 5.
year (str, optional): Year range for papers.
Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
Returns:
The number of papers found on Semantic Scholar.
"""
# Create search data object to organize variables
search_data = SearchData(query, limit, year, tool_call_id)
# Process the search
results = search_data.process_search()
return Command(
update={
"papers": results["papers"],
"last_displayed_papers": "papers",
"messages": [
ToolMessage(
content=results["content"],
tool_call_id=tool_call_id,
artifact=results["papers"],
)
],
}
)