#!/usr/bin/env python3
"""
This tool is used to return recommendations based on multiple papers
"""
import logging
from typing import Annotated, Any, List, Optional
from langchain_core.messages import ToolMessage
from langchain_core.tools import tool
from langchain_core.tools.base import InjectedToolCallId
from langgraph.types import Command
from pydantic import BaseModel, Field
from .utils.multi_helper import MultiPaperRecData
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MultiPaperRecInput(BaseModel):
"""Input schema for multiple paper recommendations tool."""
paper_ids: List[str] = Field(
description="List of Semantic Scholar Paper IDs to get recommendations for"
)
limit: int = Field(
default=10,
description="Maximum total number of recommendations to return",
ge=1,
le=500,
)
year: Optional[str] = Field(
default=None,
description="Year range in format: YYYY for specific year, "
"YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
)
tool_call_id: Annotated[str, InjectedToolCallId]
model_config = {"arbitrary_types_allowed": True}
@tool(args_schema=MultiPaperRecInput, parse_docstring=True)
def get_multi_paper_recommendations(
paper_ids: List[str],
tool_call_id: Annotated[str, InjectedToolCallId],
limit: int = 2,
year: Optional[str] = None,
) -> Command[Any]:
"""
Get recommendations for a group of multiple papers using the Semantic Scholar IDs.
No other paper IDs are supported.
Args:
paper_ids (List[str]): The list of paper IDs to base recommendations on.
tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
limit (int, optional): The maximum number of recommendations to return. Defaults to 2.
year (str, optional): Year range for papers.
Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
Returns:
Dict[str, Any]: The recommendations and related information.
"""
# Create recommendation data object to organize variables
rec_data = MultiPaperRecData(paper_ids, limit, year, tool_call_id)
# Process the recommendations
results = rec_data.process_recommendations()
return Command(
update={
"multi_papers": results["papers"],
"last_displayed_papers": "multi_papers",
"messages": [
ToolMessage(
content=results["content"],
tool_call_id=tool_call_id,
artifact=results["papers"],
)
],
}
)