[3af7d7]: / aiagents4pharma / talk2scholars / tests / test_s2_multi.py

Download this file

308 lines (258 with data), 11.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
Unit tests for S2 tools functionality.
"""
import json
from types import SimpleNamespace
import pytest
import requests
from langgraph.types import Command
from langchain_core.messages import ToolMessage
import hydra
from aiagents4pharma.talk2scholars.tools.s2.multi_paper_rec import (
get_multi_paper_recommendations,
)
from aiagents4pharma.talk2scholars.tools.s2.utils import multi_helper
# --- Dummy Hydra Config Setup ---
class DummyHydraContext:
"""dummy context manager for mocking Hydra's initialize and compose functions."""
def __enter__(self):
"""enter function that returns None."""
return None
def __exit__(self, exc_type, exc_val, traceback):
"""exit function that does nothing."""
return None
# Create a dummy configuration that mimics the expected hydra config.
dummy_config = SimpleNamespace(
tools=SimpleNamespace(
multi_paper_recommendation=SimpleNamespace(
api_endpoint="http://dummy.endpoint/multi",
headers={"Content-Type": "application/json"},
api_fields=["paperId", "title", "authors"],
request_timeout=10,
)
)
)
# --- Dummy Response Classes and Functions for requests.post ---
class DummyResponse:
"""A dummy response class for mocking HTTP responses."""
def __init__(self, json_data, status_code=200):
"""Initialize a DummyResponse with the given JSON data and status code."""
self._json_data = json_data
self.status_code = status_code
def json(self):
"""Return the JSON data from the response."""
return self._json_data
def raise_for_status(self):
"""raise an HTTP error for status codes >= 400."""
if self.status_code >= 400:
raise requests.HTTPError("HTTP Error")
def test_dummy_response_no_error():
"""Test that raise_for_status does not raise an exception for a successful response."""
# Create a DummyResponse with a successful status code.
response = DummyResponse({"data": "success"}, status_code=200)
# Calling raise_for_status should not raise an exception and should return None.
assert response.raise_for_status() is None
def test_dummy_response_raise_error():
"""Test that raise_for_status raises an exception for a failing response."""
# Create a DummyResponse with a failing status code.
response = DummyResponse({"error": "fail"}, status_code=400)
# Calling raise_for_status should raise an HTTPError.
with pytest.raises(requests.HTTPError):
response.raise_for_status()
def dummy_requests_post_success(url, headers, params, data, timeout):
"""dummy_requests_post_success"""
# Record call parameters for assertions.
dummy_requests_post_success.called_url = url
dummy_requests_post_success.called_headers = headers
dummy_requests_post_success.called_params = params
dummy_requests_post_success.called_data = data
dummy_requests_post_success.called_timeout = timeout
# Simulate a valid API response with three recommended papers;
# one paper missing authors should be filtered out.
dummy_data = {
"recommendedPapers": [
{
"paperId": "paperA",
"title": "Multi Rec Paper A",
"authors": [{"name": "Author X", "authorId": "AX"}],
"year": 2019,
"citationCount": 12,
"url": "http://paperA",
"externalIds": {"ArXiv": "arxivA"},
},
{
"paperId": "paperB",
"title": "Multi Rec Paper B",
"authors": [{"name": "Author Y", "authorId": "AY"}],
"year": 2020,
"citationCount": 18,
"url": "http://paperB",
"externalIds": {},
},
{
"paperId": "paperC",
"title": "Multi Rec Paper C",
"authors": None, # This paper should be filtered out.
"year": 2021,
"citationCount": 25,
"url": "http://paperC",
"externalIds": {"ArXiv": "arxivC"},
},
]
}
return DummyResponse(dummy_data)
def dummy_requests_post_unexpected(url, headers, params, data, timeout):
"""dummy_requests_post_unexpected"""
dummy_requests_post_unexpected.called_url = url
dummy_requests_post_unexpected.called_headers = headers
dummy_requests_post_unexpected.called_params = params
dummy_requests_post_unexpected.called_data = data
dummy_requests_post_unexpected.called_timeout = timeout
# Simulate a response missing the 'recommendedPapers' key.
return DummyResponse({"error": "Invalid format"})
def dummy_requests_post_no_recs(url, headers, params, data, timeout):
"""dummy_requests_post_no_recs"""
dummy_requests_post_no_recs.called_url = url
dummy_requests_post_no_recs.called_headers = headers
dummy_requests_post_no_recs.called_params = params
dummy_requests_post_no_recs.called_data = data
dummy_requests_post_no_recs.called_timeout = timeout
# Simulate a response with an empty recommendations list.
return DummyResponse({"recommendedPapers": []})
def dummy_requests_post_exception(url, headers, params, data, timeout):
"""dummy_requests_post_exception"""
dummy_requests_post_exception.called_url = url
dummy_requests_post_exception.called_headers = headers
dummy_requests_post_exception.called_params = params
dummy_requests_post_exception.called_data = data
dummy_requests_post_exception.called_timeout = timeout
# Simulate a network exception.
raise requests.exceptions.RequestException("Connection error")
# --- Pytest Fixture to Patch Hydra ---
@pytest.fixture(autouse=True)
def patch_hydra(monkeypatch):
"""Patch Hydra's initialize and compose functions to return dummy objects."""
# Patch hydra.initialize to return our dummy context manager.
monkeypatch.setattr(
hydra, "initialize", lambda version_base, config_path: DummyHydraContext()
)
# Patch hydra.compose to return our dummy config.
monkeypatch.setattr(hydra, "compose", lambda config_name, overrides: dummy_config)
# --- Test Cases ---
def test_multi_paper_rec_success(monkeypatch):
"""
Test that get_multi_paper_recommendations returns a valid Command object
when the API response is successful. Also, ensure that recommendations missing
required fields (like authors) are filtered out.
"""
monkeypatch.setattr(requests, "post", dummy_requests_post_success)
tool_call_id = "test_tool_call_id"
input_data = {
"paper_ids": ["p1", "p2"],
"tool_call_id": tool_call_id,
"limit": 2,
"year": "2020",
}
# Call the tool using .run() with a dictionary input.
result = get_multi_paper_recommendations.run(input_data)
# Validate that the result is a Command with the expected update structure.
assert isinstance(result, Command)
update = result.update
assert "multi_papers" in update
papers = update["multi_papers"]
# Papers with valid 'title' and 'authors' should be included.
assert "paperA" in papers
assert "paperB" in papers
# Paper "paperC" is missing authors and should be filtered out.
assert "paperC" not in papers
# Check that a ToolMessage is included in the messages.
messages = update.get("messages", [])
assert len(messages) == 1
msg = messages[0]
assert isinstance(msg, ToolMessage)
assert "Recommendations based on multiple papers were successful" in msg.content
# Verify that the correct parameters were sent to requests.post.
called_params = dummy_requests_post_success.called_params
assert called_params["limit"] == 2 # Should be min(limit, 500)
assert called_params["fields"] == "paperId,title,authors"
# The year parameter should be present.
assert called_params["year"] == "2020"
# Also check the payload sent in the data.
sent_payload = json.loads(dummy_requests_post_success.called_data)
assert sent_payload["positivePaperIds"] == ["p1", "p2"]
assert sent_payload["negativePaperIds"] == []
def test_multi_paper_rec_unexpected_format(monkeypatch):
"""
Test that get_multi_paper_recommendations raises a RuntimeError when the API
response does not include the expected 'recommendedPapers' key.
"""
monkeypatch.setattr(requests, "post", dummy_requests_post_unexpected)
tool_call_id = "test_tool_call_id"
input_data = {
"paper_ids": ["p1", "p2"],
"tool_call_id": tool_call_id,
}
with pytest.raises(
RuntimeError,
match=(
"Unexpected response from Semantic Scholar API. The results could not be "
"retrieved due to an unexpected format. "
"Please modify your search query and try again."
),
):
get_multi_paper_recommendations.run(input_data)
def test_multi_paper_rec_no_recommendations(monkeypatch):
"""
Test that get_multi_paper_recommendations raises a RuntimeError when the API
returns no recommendations.
"""
monkeypatch.setattr(requests, "post", dummy_requests_post_no_recs)
tool_call_id = "test_tool_call_id"
input_data = {
"paper_ids": ["p1", "p2"],
"tool_call_id": tool_call_id,
}
with pytest.raises(
RuntimeError,
match=(
"No recommendations were found for your query. Consider refining your search "
"by using more specific keywords or different terms."
),
):
get_multi_paper_recommendations.run(input_data)
def test_multi_paper_rec_requests_exception(monkeypatch):
"""
Test that get_multi_paper_recommendations raises a RuntimeError when requests.post
throws an exception.
"""
monkeypatch.setattr(requests, "post", dummy_requests_post_exception)
tool_call_id = "test_tool_call_id"
input_data = {
"paper_ids": ["p1", "p2"],
"tool_call_id": tool_call_id,
}
with pytest.raises(
RuntimeError,
match="Failed to connect to Semantic Scholar API after 10 attempts."
"Please retry the same query.",
):
get_multi_paper_recommendations.run(input_data)
def test_multi_paper_rec_no_response(monkeypatch):
"""
Test that get_multi_paper_recommendations raises a RuntimeError
when no response is obtained. This is simulated by patching 'range'
in the module namespace of multi_helper to return an empty iterator,
so that the for loop in _fetch_recommendations never iterates and
self.response remains None.
"""
# Inject a patched 'range' into the multi_helper module's dictionary.
monkeypatch.setitem(multi_helper.__dict__, "range", lambda x: iter([]))
tool_call_id = "test_tool_call_id"
input_data = {
"paper_ids": ["p1", "p2"],
"tool_call_id": tool_call_id,
}
with pytest.raises(
RuntimeError, match="Failed to obtain a response from the Semantic Scholar API."
):
get_multi_paper_recommendations.run(input_data)