[3af7d7]: / aiagents4pharma / talk2knowledgegraphs / tools / subgraph_extraction.py

Download this file

306 lines (270 with data), 11.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
Tool for performing subgraph extraction.
"""
from typing import Type, Annotated
import logging
import pickle
import numpy as np
import pandas as pd
import hydra
import networkx as nx
from pydantic import BaseModel, Field
from langchain.chains.retrieval import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_core.tools import BaseTool
from langchain_core.messages import ToolMessage
from langchain_core.tools.base import InjectedToolCallId
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.types import Command
from langgraph.prebuilt import InjectedState
import torch
from torch_geometric.data import Data
from ..utils.extractions.pcst import PCSTPruning
from ..utils.embeddings.ollama import EmbeddingWithOllama
from .load_arguments import ArgumentData
# Initialize logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SubgraphExtractionInput(BaseModel):
"""
SubgraphExtractionInput is a Pydantic model representing an input for extracting a subgraph.
Args:
prompt: Prompt to interact with the backend.
tool_call_id: Tool call ID.
state: Injected state.
arg_data: Argument for analytical process over graph data.
"""
tool_call_id: Annotated[str, InjectedToolCallId] = Field(
description="Tool call ID."
)
state: Annotated[dict, InjectedState] = Field(description="Injected state.")
prompt: str = Field(description="Prompt to interact with the backend.")
arg_data: ArgumentData = Field(
description="Experiment over graph data.", default=None
)
class SubgraphExtractionTool(BaseTool):
"""
This tool performs subgraph extraction based on user's prompt by taking into account
the top-k nodes and edges.
"""
name: str = "subgraph_extraction"
description: str = "A tool for subgraph extraction based on user's prompt."
args_schema: Type[BaseModel] = SubgraphExtractionInput
def perform_endotype_filtering(
self,
prompt: str,
state: Annotated[dict, InjectedState],
cfg: hydra.core.config_store.ConfigStore,
) -> str:
"""
Perform endotype filtering based on the uploaded files and prepare the prompt.
Args:
prompt: The prompt to interact with the backend.
state: Injected state for the tool.
cfg: Hydra configuration object.
"""
# Loop through the uploaded files
all_genes = []
for uploaded_file in state["uploaded_files"]:
if uploaded_file["file_type"] == "endotype":
# Load the PDF file
docs = PyPDFLoader(file_path=uploaded_file["file_path"]).load()
# Split the text into chunks
splits = RecursiveCharacterTextSplitter(
chunk_size=cfg.splitter_chunk_size,
chunk_overlap=cfg.splitter_chunk_overlap,
).split_documents(docs)
# Create a chat prompt template
prompt_template = ChatPromptTemplate.from_messages(
[
("system", cfg.prompt_endotype_filtering),
("human", "{input}"),
]
)
qa_chain = create_stuff_documents_chain(
state["llm_model"], prompt_template
)
rag_chain = create_retrieval_chain(
InMemoryVectorStore.from_documents(
documents=splits, embedding=state["embedding_model"]
).as_retriever(
search_type=cfg.retriever_search_type,
search_kwargs={
"k": cfg.retriever_k,
"fetch_k": cfg.retriever_fetch_k,
"lambda_mult": cfg.retriever_lambda_mult,
},
),
qa_chain,
)
results = rag_chain.invoke({"input": prompt})
all_genes.append(results["answer"])
# Prepare the prompt
if len(all_genes) > 0:
prompt = " ".join(
[prompt, cfg.prompt_endotype_addition, ", ".join(all_genes)]
)
return prompt
def prepare_final_subgraph(self,
subgraph: dict,
pyg_graph: Data,
textualized_graph: pd.DataFrame) -> dict:
"""
Prepare the subgraph based on the extracted subgraph.
Args:
subgraph: The extracted subgraph.
pyg_graph: The PyTorch Geometric graph.
textualized_graph: The textualized graph.
Returns:
A dictionary containing the PyG graph, NetworkX graph, and textualized graph.
"""
# print(subgraph)
# Prepare the PyTorch Geometric graph
mapping = {n: i for i, n in enumerate(subgraph["nodes"].tolist())}
pyg_graph = Data(
# Node features
x=pyg_graph.x[subgraph["nodes"]],
node_id=np.array(pyg_graph.node_id)[subgraph["nodes"]].tolist(),
node_name=np.array(pyg_graph.node_id)[subgraph["nodes"]].tolist(),
enriched_node=np.array(pyg_graph.enriched_node)[subgraph["nodes"]].tolist(),
num_nodes=len(subgraph["nodes"]),
# Edge features
edge_index=torch.LongTensor(
[
[
mapping[i]
for i in pyg_graph.edge_index[:, subgraph["edges"]][0].tolist()
],
[
mapping[i]
for i in pyg_graph.edge_index[:, subgraph["edges"]][1].tolist()
],
]
),
edge_attr=pyg_graph.edge_attr[subgraph["edges"]],
edge_type=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
relation=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
label=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
enriched_edge=np.array(pyg_graph.enriched_edge)[subgraph["edges"]].tolist(),
)
# Networkx DiGraph construction to be visualized in the frontend
nx_graph = nx.DiGraph()
for n in pyg_graph.node_name:
nx_graph.add_node(n)
for i, e in enumerate(
[
[pyg_graph.node_name[i], pyg_graph.node_name[j]]
for (i, j) in pyg_graph.edge_index.transpose(1, 0)
]
):
nx_graph.add_edge(
e[0],
e[1],
relation=pyg_graph.edge_type[i],
label=pyg_graph.edge_type[i],
)
# Prepare the textualized subgraph
textualized_graph = (
textualized_graph["nodes"].iloc[subgraph["nodes"]].to_csv(index=False)
+ "\n"
+ textualized_graph["edges"].iloc[subgraph["edges"]].to_csv(index=False)
)
return {
"graph_pyg": pyg_graph,
"graph_nx": nx_graph,
"graph_text": textualized_graph,
}
def _run(
self,
tool_call_id: Annotated[str, InjectedToolCallId],
state: Annotated[dict, InjectedState],
prompt: str,
arg_data: ArgumentData = None,
) -> Command:
"""
Run the subgraph extraction tool.
Args:
tool_call_id: The tool call ID for the tool.
state: Injected state for the tool.
prompt: The prompt to interact with the backend.
arg_data (ArgumentData): The argument data.
Returns:
Command: The command to be executed.
"""
logger.log(logging.INFO, "Invoking subgraph_extraction tool")
# Load hydra configuration
with hydra.initialize(version_base=None, config_path="../configs"):
cfg = hydra.compose(
config_name="config", overrides=["tools/subgraph_extraction=default"]
)
cfg = cfg.tools.subgraph_extraction
# Retrieve source graph from the state
initial_graph = {}
initial_graph["source"] = state["dic_source_graph"][-1] # The last source graph as of now
# logger.log(logging.INFO, "Source graph: %s", source_graph)
# Load the knowledge graph
with open(initial_graph["source"]["kg_pyg_path"], "rb") as f:
initial_graph["pyg"] = pickle.load(f)
with open(initial_graph["source"]["kg_text_path"], "rb") as f:
initial_graph["text"] = pickle.load(f)
# Prepare prompt construction along with a list of endotypes
if len(state["uploaded_files"]) != 0 and "endotype" in [
f["file_type"] for f in state["uploaded_files"]
]:
prompt = self.perform_endotype_filtering(prompt, state, cfg)
# Prepare embedding model and embed the user prompt as query
query_emb = torch.tensor(
EmbeddingWithOllama(model_name=cfg.ollama_embeddings[0]).embed_query(prompt)
).float()
# Prepare the PCSTPruning object and extract the subgraph
# Parameters were set in the configuration file obtained from Hydra
subgraph = PCSTPruning(
state["topk_nodes"],
state["topk_edges"],
cfg.cost_e,
cfg.c_const,
cfg.root,
cfg.num_clusters,
cfg.pruning,
cfg.verbosity_level,
).extract_subgraph(initial_graph["pyg"], query_emb)
# Prepare subgraph as a NetworkX graph and textualized graph
final_subgraph = self.prepare_final_subgraph(
subgraph, initial_graph["pyg"], initial_graph["text"]
)
# Prepare the dictionary of extracted graph
dic_extracted_graph = {
"name": arg_data.extraction_name,
"tool_call_id": tool_call_id,
"graph_source": initial_graph["source"]["name"],
"topk_nodes": state["topk_nodes"],
"topk_edges": state["topk_edges"],
"graph_dict": {
"nodes": list(final_subgraph["graph_nx"].nodes(data=True)),
"edges": list(final_subgraph["graph_nx"].edges(data=True)),
},
"graph_text": final_subgraph["graph_text"],
"graph_summary": None,
}
# Prepare the dictionary of updated state
dic_updated_state_for_model = {}
for key, value in {
"dic_extracted_graph": [dic_extracted_graph],
}.items():
if value:
dic_updated_state_for_model[key] = value
# Return the updated state of the tool
return Command(
update=dic_updated_state_for_model | {
# update the message history
"messages": [
ToolMessage(
content=f"Subgraph Extraction Result of {arg_data.extraction_name}",
tool_call_id=tool_call_id,
)
],
}
)