|
a |
|
b/aiagents4pharma/talk2knowledgegraphs/datasets/starkqa_primekg.py |
|
|
1 |
""" |
|
|
2 |
Class for loading StarkQAPrimeKG dataset. |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
import os |
|
|
6 |
import shutil |
|
|
7 |
import pickle |
|
|
8 |
import numpy as np |
|
|
9 |
import pandas as pd |
|
|
10 |
from tqdm import tqdm |
|
|
11 |
import torch |
|
|
12 |
from huggingface_hub import hf_hub_download, list_repo_files |
|
|
13 |
import gdown |
|
|
14 |
from .dataset import Dataset |
|
|
15 |
|
|
|
16 |
class StarkQAPrimeKG(Dataset): |
|
|
17 |
""" |
|
|
18 |
Class for loading StarkQAPrimeKG dataset. |
|
|
19 |
It downloads the data from the HuggingFace repo and stores it in the local directory. |
|
|
20 |
The data is then loaded into pandas DataFrame of QA pairs, dictionary of split indices, |
|
|
21 |
and node information. |
|
|
22 |
""" |
|
|
23 |
|
|
|
24 |
def __init__(self, local_dir: str = "../../../data/starkqa_primekg/"): |
|
|
25 |
""" |
|
|
26 |
Constructor for StarkQAPrimeKG class. |
|
|
27 |
|
|
|
28 |
Args: |
|
|
29 |
local_dir (str): The local directory to store the dataset files. |
|
|
30 |
""" |
|
|
31 |
self.name: str = "starkqa_primekg" |
|
|
32 |
self.hf_repo_id: str = "snap-stanford/stark" |
|
|
33 |
self.local_dir: str = local_dir |
|
|
34 |
# Attributes to store the data |
|
|
35 |
self.starkqa: pd.DataFrame = None |
|
|
36 |
self.starkqa_split_idx: dict = None |
|
|
37 |
self.starkqa_node_info: dict = None |
|
|
38 |
self.query_emb_dict: dict = None |
|
|
39 |
self.node_emb_dict: dict = None |
|
|
40 |
|
|
|
41 |
# Set up the dataset |
|
|
42 |
self.setup() |
|
|
43 |
|
|
|
44 |
def setup(self): |
|
|
45 |
""" |
|
|
46 |
A method to set up the dataset. |
|
|
47 |
""" |
|
|
48 |
# Make the directory if it doesn't exist |
|
|
49 |
os.makedirs(os.path.dirname(self.local_dir), exist_ok=True) |
|
|
50 |
|
|
|
51 |
def _load_stark_repo(self) -> tuple[pd.DataFrame, dict, dict]: |
|
|
52 |
""" |
|
|
53 |
Private method to load related files of StarkQAPrimeKG dataset. |
|
|
54 |
|
|
|
55 |
Returns: |
|
|
56 |
The nodes dataframe of StarkQAPrimeKG dataset. |
|
|
57 |
The split indices of StarkQAPrimeKG dataset. |
|
|
58 |
The node information of StarkQAPrimeKG dataset. |
|
|
59 |
""" |
|
|
60 |
# Download the file if it does not exist in the local directory |
|
|
61 |
# Otherwise, load the data from the local directory |
|
|
62 |
local_file = os.path.join(self.local_dir, "qa/prime/stark_qa/stark_qa.csv") |
|
|
63 |
if os.path.exists(local_file): |
|
|
64 |
print(f"{local_file} already exists. Loading the data from the local directory.") |
|
|
65 |
else: |
|
|
66 |
print(f"Downloading files from {self.hf_repo_id}") |
|
|
67 |
|
|
|
68 |
# List all related files in the HuggingFace Hub repository |
|
|
69 |
files = list_repo_files(self.hf_repo_id, repo_type="dataset") |
|
|
70 |
files = [f for f in files if ((f.startswith("qa/prime/") or |
|
|
71 |
f.startswith("skb/prime/")) and f.find("raw") == -1)] |
|
|
72 |
|
|
|
73 |
# Download and save each file in the specified folder |
|
|
74 |
for file in tqdm(files): |
|
|
75 |
_ = hf_hub_download(self.hf_repo_id, |
|
|
76 |
file, |
|
|
77 |
repo_type="dataset", |
|
|
78 |
local_dir=self.local_dir) |
|
|
79 |
|
|
|
80 |
# Unzip the processed files |
|
|
81 |
shutil.unpack_archive( |
|
|
82 |
os.path.join(self.local_dir, "skb/prime/processed.zip"), |
|
|
83 |
os.path.join(self.local_dir, "skb/prime/") |
|
|
84 |
) |
|
|
85 |
|
|
|
86 |
# Load StarkQA dataframe |
|
|
87 |
starkqa = pd.read_csv( |
|
|
88 |
os.path.join(self.local_dir, "qa/prime/stark_qa/stark_qa.csv"), |
|
|
89 |
low_memory=False) |
|
|
90 |
|
|
|
91 |
# Read split indices |
|
|
92 |
qa_indices = sorted(starkqa['id'].tolist()) |
|
|
93 |
starkqa_split_idx = {} |
|
|
94 |
for split in ['train', 'val', 'test', 'test-0.1']: |
|
|
95 |
indices_file = os.path.join(self.local_dir, "qa/prime/split", f'{split}.index') |
|
|
96 |
with open(indices_file, 'r', encoding='utf-8') as f: |
|
|
97 |
indices = f.read().strip().split('\n') |
|
|
98 |
query_ids = [int(idx) for idx in indices] |
|
|
99 |
starkqa_split_idx[split] = np.array( |
|
|
100 |
[qa_indices.index(query_id) for query_id in query_ids] |
|
|
101 |
) |
|
|
102 |
|
|
|
103 |
# Load the node info of PrimeKG preprocessed for StarkQA |
|
|
104 |
with open(os.path.join(self.local_dir, 'skb/prime/processed/node_info.pkl'), 'rb') as f: |
|
|
105 |
starkqa_node_info = pickle.load(f) |
|
|
106 |
|
|
|
107 |
return starkqa, starkqa_split_idx, starkqa_node_info |
|
|
108 |
|
|
|
109 |
def _load_stark_embeddings(self) -> tuple[dict, dict]: |
|
|
110 |
""" |
|
|
111 |
Private method to load the embeddings of StarkQAPrimeKG dataset. |
|
|
112 |
|
|
|
113 |
Returns: |
|
|
114 |
The query embeddings of StarkQAPrimeKG dataset. |
|
|
115 |
The node embeddings of StarkQAPrimeKG dataset. |
|
|
116 |
""" |
|
|
117 |
# Load the provided embeddings of query and nodes |
|
|
118 |
# Note that they utilized 'text-embedding-ada-002' for embeddings |
|
|
119 |
emb_model = 'text-embedding-ada-002' |
|
|
120 |
query_emb_url = 'https://drive.google.com/uc?id=1MshwJttPZsHEM2cKA5T13SIrsLeBEdyU' |
|
|
121 |
node_emb_url = 'https://drive.google.com/uc?id=16EJvCMbgkVrQ0BuIBvLBp-BYPaye-Edy' |
|
|
122 |
|
|
|
123 |
# Prepare respective directories to store the embeddings |
|
|
124 |
emb_dir = os.path.join(self.local_dir, emb_model) |
|
|
125 |
query_emb_dir = os.path.join(emb_dir, "query") |
|
|
126 |
node_emb_dir = os.path.join(emb_dir, "doc") |
|
|
127 |
os.makedirs(query_emb_dir, exist_ok=True) |
|
|
128 |
os.makedirs(node_emb_dir, exist_ok=True) |
|
|
129 |
query_emb_path = os.path.join(query_emb_dir, "query_emb_dict.pt") |
|
|
130 |
node_emb_path = os.path.join(node_emb_dir, "candidate_emb_dict.pt") |
|
|
131 |
|
|
|
132 |
# Download the embeddings if they do not exist in the local directory |
|
|
133 |
if not os.path.exists(query_emb_path) or not os.path.exists(node_emb_path): |
|
|
134 |
# Download the query embeddings |
|
|
135 |
gdown.download(query_emb_url, query_emb_path, quiet=False) |
|
|
136 |
|
|
|
137 |
# Download the node embeddings |
|
|
138 |
gdown.download(node_emb_url, node_emb_path, quiet=False) |
|
|
139 |
|
|
|
140 |
# Load the embeddings |
|
|
141 |
query_emb_dict = torch.load(query_emb_path) |
|
|
142 |
node_emb_dict = torch.load(node_emb_path) |
|
|
143 |
|
|
|
144 |
return query_emb_dict, node_emb_dict |
|
|
145 |
|
|
|
146 |
def load_data(self): |
|
|
147 |
""" |
|
|
148 |
Load the StarkQAPrimeKG dataset into pandas DataFrame of QA pairs, |
|
|
149 |
dictionary of split indices, and node information. |
|
|
150 |
""" |
|
|
151 |
print("Loading StarkQAPrimeKG dataset...") |
|
|
152 |
self.starkqa, self.starkqa_split_idx, self.starkqa_node_info = self._load_stark_repo() |
|
|
153 |
|
|
|
154 |
print("Loading StarkQAPrimeKG embeddings...") |
|
|
155 |
self.query_emb_dict, self.node_emb_dict = self._load_stark_embeddings() |
|
|
156 |
|
|
|
157 |
|
|
|
158 |
def get_starkqa(self) -> pd.DataFrame: |
|
|
159 |
""" |
|
|
160 |
Get the dataframe of StarkQAPrimeKG dataset, containing the QA pairs. |
|
|
161 |
|
|
|
162 |
Returns: |
|
|
163 |
The nodes dataframe of PrimeKG dataset. |
|
|
164 |
""" |
|
|
165 |
return self.starkqa |
|
|
166 |
|
|
|
167 |
def get_starkqa_split_indicies(self) -> dict: |
|
|
168 |
""" |
|
|
169 |
Get the split indices of StarkQAPrimeKG dataset. |
|
|
170 |
|
|
|
171 |
Returns: |
|
|
172 |
The split indices of StarkQAPrimeKG dataset. |
|
|
173 |
""" |
|
|
174 |
return self.starkqa_split_idx |
|
|
175 |
|
|
|
176 |
def get_starkqa_node_info(self) -> dict: |
|
|
177 |
""" |
|
|
178 |
Get the node information of StarkQAPrimeKG dataset. |
|
|
179 |
|
|
|
180 |
Returns: |
|
|
181 |
The node information of StarkQAPrimeKG dataset. |
|
|
182 |
""" |
|
|
183 |
return self.starkqa_node_info |
|
|
184 |
|
|
|
185 |
def get_query_embeddings(self) -> dict: |
|
|
186 |
""" |
|
|
187 |
Get the query embeddings of StarkQAPrimeKG dataset. |
|
|
188 |
|
|
|
189 |
Returns: |
|
|
190 |
The query embeddings of StarkQAPrimeKG dataset. |
|
|
191 |
""" |
|
|
192 |
return self.query_emb_dict |
|
|
193 |
|
|
|
194 |
def get_node_embeddings(self) -> dict: |
|
|
195 |
""" |
|
|
196 |
Get the node embeddings of StarkQAPrimeKG dataset. |
|
|
197 |
|
|
|
198 |
Returns: |
|
|
199 |
The node embeddings of StarkQAPrimeKG dataset. |
|
|
200 |
""" |
|
|
201 |
return self.node_emb_dict |