|
a |
|
b/vignettes/vignette.R |
|
|
1 |
## ---- echo = FALSE----------------------------------------------------------- |
|
|
2 |
knitr::opts_chunk$set(eval = TRUE, |
|
|
3 |
echo = TRUE, |
|
|
4 |
fig.align = "center", |
|
|
5 |
warning = FALSE, |
|
|
6 |
message = FALSE) |
|
|
7 |
|
|
|
8 |
## ---- message=FALSE, warning=FALSE-------------------------------------------- |
|
|
9 |
library(timeOmics) |
|
|
10 |
|
|
|
11 |
## ---- message=F--------------------------------------------------------------- |
|
|
12 |
library(tidyverse) |
|
|
13 |
|
|
|
14 |
## ----------------------------------------------------------------------------- |
|
|
15 |
data("timeOmics.simdata") |
|
|
16 |
sim.data <- timeOmics.simdata$sim |
|
|
17 |
|
|
|
18 |
dim(sim.data) |
|
|
19 |
head(sim.data[,1:6]) |
|
|
20 |
|
|
|
21 |
## ----------------------------------------------------------------------------- |
|
|
22 |
remove.low.cv <- function(X, cutoff = 0.5){ |
|
|
23 |
# var.coef |
|
|
24 |
cv <- unlist(lapply(as.data.frame(X), |
|
|
25 |
function(x) abs(sd(x)/mean(x)))) |
|
|
26 |
return(X[,cv > cutoff]) |
|
|
27 |
} |
|
|
28 |
|
|
|
29 |
data.filtered <- remove.low.cv(sim.data, 0.5) |
|
|
30 |
|
|
|
31 |
## ---- message=FALSE----------------------------------------------------------- |
|
|
32 |
# numeric vector containing the sample time point information |
|
|
33 |
time <- timeOmics.simdata$time |
|
|
34 |
head(time) |
|
|
35 |
|
|
|
36 |
## ----eval=FALSE--------------------------------------------------------------- |
|
|
37 |
# # example of lmms |
|
|
38 |
# lmms.output <- lmms::lmmSpline(data = data.filtered, time = time, |
|
|
39 |
# sampleID = rownames(data.filtered), deri = FALSE, |
|
|
40 |
# basis = "p-spline", numCores = 4, timePredict = 1:9, |
|
|
41 |
# keepModels = TRUE) |
|
|
42 |
# modelled.data <- t(slot(lmms.output, 'predSpline')) |
|
|
43 |
|
|
|
44 |
## ---- warning=FALSE, message=FALSE-------------------------------------------- |
|
|
45 |
lmms.output <- timeOmics.simdata$lmms.output |
|
|
46 |
modelled.data <- timeOmics.simdata$modelled |
|
|
47 |
|
|
|
48 |
## ----------------------------------------------------------------------------- |
|
|
49 |
# gather data |
|
|
50 |
data.gathered <- modelled.data %>% as.data.frame() %>% |
|
|
51 |
rownames_to_column("time") %>% |
|
|
52 |
mutate(time = as.numeric(time)) %>% |
|
|
53 |
pivot_longer(names_to="feature", values_to = 'value', -time) |
|
|
54 |
|
|
|
55 |
# plot profiles |
|
|
56 |
ggplot(data.gathered, aes(x = time, y = value, color = feature)) + geom_line() + |
|
|
57 |
theme_bw() + ggtitle("`lmms` profiles") + ylab("Feature expression") + |
|
|
58 |
xlab("Time") |
|
|
59 |
|
|
|
60 |
## ----------------------------------------------------------------------------- |
|
|
61 |
filter.res <- lmms.filter.lines(data = data.filtered, |
|
|
62 |
lmms.obj = lmms.output, time = time) |
|
|
63 |
profile.filtered <- filter.res$filtered |
|
|
64 |
|
|
|
65 |
## ----------------------------------------------------------------------------- |
|
|
66 |
# run pca |
|
|
67 |
pca.res <- pca(X = profile.filtered, ncomp = 5, scale=FALSE, center=FALSE) |
|
|
68 |
|
|
|
69 |
# tuning ncomp |
|
|
70 |
pca.ncomp <- getNcomp(pca.res, max.ncomp = 5, X = profile.filtered, |
|
|
71 |
scale = FALSE, center=FALSE) |
|
|
72 |
|
|
|
73 |
pca.ncomp$choice.ncomp |
|
|
74 |
plot(pca.ncomp) |
|
|
75 |
|
|
|
76 |
## ----------------------------------------------------------------------------- |
|
|
77 |
# final model |
|
|
78 |
pca.res <- pca(X = profile.filtered, ncomp = 2, scale = FALSE, center=FALSE) |
|
|
79 |
|
|
|
80 |
## ----------------------------------------------------------------------------- |
|
|
81 |
# extract cluster |
|
|
82 |
pca.cluster <- getCluster(pca.res) |
|
|
83 |
head(pca.cluster) |
|
|
84 |
|
|
|
85 |
## ----------------------------------------------------------------------------- |
|
|
86 |
plotIndiv(pca.res) |
|
|
87 |
|
|
|
88 |
## ----------------------------------------------------------------------------- |
|
|
89 |
plotVar(pca.res) |
|
|
90 |
|
|
|
91 |
## ----------------------------------------------------------------------------- |
|
|
92 |
plotLoadings(pca.res) |
|
|
93 |
|
|
|
94 |
## ----------------------------------------------------------------------------- |
|
|
95 |
plotLong(pca.res, scale = FALSE, center = FALSE, |
|
|
96 |
title = "PCA longitudinal clustering") |
|
|
97 |
|
|
|
98 |
## ----------------------------------------------------------------------------- |
|
|
99 |
tune.spca.res <- tuneCluster.spca(X = profile.filtered, ncomp = 2, |
|
|
100 |
test.keepX = c(2:10)) |
|
|
101 |
# selected features in each component |
|
|
102 |
tune.spca.res$choice.keepX |
|
|
103 |
plot(tune.spca.res) |
|
|
104 |
|
|
|
105 |
## ----------------------------------------------------------------------------- |
|
|
106 |
# final model |
|
|
107 |
spca.res <- spca(X = profile.filtered, ncomp = 2, |
|
|
108 |
keepX = tune.spca.res$choice.keepX, scale = FALSE) |
|
|
109 |
plotLong(spca.res) |
|
|
110 |
|
|
|
111 |
## ----------------------------------------------------------------------------- |
|
|
112 |
X <- profile.filtered |
|
|
113 |
Y <- timeOmics.simdata$Y |
|
|
114 |
|
|
|
115 |
pls.res <- pls(X,Y, ncomp = 5, scale = FALSE) |
|
|
116 |
pls.ncomp <- getNcomp(pls.res, max.ncomp = 5, X=X, Y=Y, scale = FALSE) |
|
|
117 |
pls.ncomp$choice.ncomp |
|
|
118 |
plot(pls.ncomp) |
|
|
119 |
|
|
|
120 |
## ----------------------------------------------------------------------------- |
|
|
121 |
# final model |
|
|
122 |
pls.res <- pls(X,Y, ncomp = 2, scale = FALSE) |
|
|
123 |
|
|
|
124 |
# info cluster |
|
|
125 |
head(getCluster(pls.res)) |
|
|
126 |
# plot clusters |
|
|
127 |
plotLong(pls.res, title = "PLS longitudinal clustering", legend = TRUE) |
|
|
128 |
|
|
|
129 |
## ----------------------------------------------------------------------------- |
|
|
130 |
tune.spls <- tuneCluster.spls(X, Y, ncomp = 2, test.keepX = c(4:10), test.keepY <- c(2,4,6)) |
|
|
131 |
|
|
|
132 |
# selected features in each component on block X |
|
|
133 |
tune.spls$choice.keepX |
|
|
134 |
# selected features in each component on block Y |
|
|
135 |
tune.spls$choice.keepY |
|
|
136 |
|
|
|
137 |
# final model |
|
|
138 |
spls.res <- spls(X,Y, ncomp = 2, scale = FALSE, |
|
|
139 |
keepX = tune.spls$choice.keepX, keepY = tune.spls$choice.keepY) |
|
|
140 |
|
|
|
141 |
# spls cluster |
|
|
142 |
spls.cluster <- getCluster(spls.res) |
|
|
143 |
|
|
|
144 |
# longitudinal cluster plot |
|
|
145 |
plotLong(spls.res, title = "sPLS clustering") |
|
|
146 |
|
|
|
147 |
## ----------------------------------------------------------------------------- |
|
|
148 |
X <- list("X" = profile.filtered, "Z" = timeOmics.simdata$Z) |
|
|
149 |
Y <- as.matrix(timeOmics.simdata$Y) |
|
|
150 |
|
|
|
151 |
block.pls.res <- block.pls(X=X, Y=Y, ncomp = 5, |
|
|
152 |
scale = FALSE, mode = "canonical") |
|
|
153 |
block.ncomp <- getNcomp(block.pls.res,X=X, Y=Y, |
|
|
154 |
scale = FALSE, mode = "canonical") |
|
|
155 |
block.ncomp$choice.ncomp |
|
|
156 |
plot(block.ncomp) |
|
|
157 |
|
|
|
158 |
## ----------------------------------------------------------------------------- |
|
|
159 |
# final model |
|
|
160 |
block.pls.res <- block.pls(X=X, Y=Y, ncomp = 1, scale = FALSE, mode = "canonical") |
|
|
161 |
# block.pls cluster |
|
|
162 |
block.pls.cluster <- getCluster(block.pls.res) |
|
|
163 |
|
|
|
164 |
# longitudinal cluster plot |
|
|
165 |
plotLong(block.pls.res) |
|
|
166 |
|
|
|
167 |
## ----------------------------------------------------------------------------- |
|
|
168 |
test.list.keepX <- list("X" = 4:10, "Z" = c(2,4,6,8)) |
|
|
169 |
test.keepY <- c(2,4,6) |
|
|
170 |
|
|
|
171 |
tune.block.res <- tuneCluster.block.spls(X= X, Y= Y, |
|
|
172 |
test.list.keepX=test.list.keepX, |
|
|
173 |
test.keepY= test.keepY, |
|
|
174 |
scale=FALSE, |
|
|
175 |
mode = "canonical", ncomp = 1) |
|
|
176 |
# ncomp = 1 given by the getNcomp() function |
|
|
177 |
|
|
|
178 |
# selected features in each component on block X |
|
|
179 |
tune.block.res$choice.keepX |
|
|
180 |
# selected features in each component on block Y |
|
|
181 |
tune.block.res$choice.keepY |
|
|
182 |
|
|
|
183 |
# final model |
|
|
184 |
block.pls.res <- block.spls(X=X, Y=Y, |
|
|
185 |
ncomp = 1, |
|
|
186 |
scale = FALSE, |
|
|
187 |
mode = "canonical", |
|
|
188 |
keepX = tune.block.res$choice.keepX, |
|
|
189 |
keepY = tune.block.res$choice.keepY) |
|
|
190 |
|
|
|
191 |
head(getCluster(block.pls.res)) |
|
|
192 |
plotLong(block.pls.res) |
|
|
193 |
|