Diff of /README.md [000000] .. [d79ff0]

Switch to side-by-side view

--- a
+++ b/README.md
@@ -0,0 +1,47 @@
+
+[![Build Status](https://travis-ci.com/abodein/timeOmics_BioC.svg?branch=master)](https://travis-ci.com/abodein/timeOmics)
+[![codecov](https://codecov.io/gh/abodein/timeOmics_BioC/branch/master/graph/badge.svg)](https://codecov.io/gh/abodein/timeOmics)
+[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
+
+# timeOmics
+
+***timeOmics*** is a generic data-driven framework to integrate multi-Omics longitudinal data (**A.**) measured on the same biological samples and select key temporal features with strong associations within the same sample group.
+
+![](./man/figures/method_overview.png)
+
+The main steps of ***timeOmics*** are:
+
+* a pre-processing step (**B.**) Normalize and filter low-expressed features, except those not varying over time,
+* a modelling step (**C.**)  Capture inter-individual variability in biological/technical replicates and accommodate heterogeneous experimental designs,
+* a clustering step (**D.**) Group features with the same expression profile over time. Feature selection step can also be used to identify a signature per cluster,
+* a post-hoc validation step (**E.**) Ensure clustering quality.
+
+***timeOmics*** can be applied on both single-Omic or multi-Omics experimental design.
+
+*<font color="green"> If you came to this page thanks to our article and you wish to access its example scripts please follow this
+<a href="https://github.com/abodein/timeOmics_frontiers"> link </a>.</font>*
+
+## Installation
+
+### Latest `GitHub` Version
+
+Install the devtools package in R, then load it and install the latest stable version of `timeOmics` from `GitHub`
+
+```r
+## install devtools if not installed
+if (!requireNamespace("devtools", quietly = TRUE))
+    install.packages("devtools")
+## install timeOmics
+devtools::install_github("abodein/timeOmics")
+```
+
+## Citing
+
+*Bodein A, Chapleur O, Droit A and Lê Cao K-A (2019) A Generic Multivariate Framework for the Integration of Microbiome Longitudinal Studies With Other Data Types. Front. Genet. 10:963. <a href="http://dx.doi.org/10.3389/fgene.2019.00963"> doi:10.3389/fgene.2019.00963</a>*
+
+## Maintainer
+Antoine Bodein (<antoine.bodein.1@ulaval.ca>)
+
+## Bugs/Feature requests
+
+If you have any bugs or feature requests, [let us know](https://github.com/abodein/timeOmics_BioC/issues). Thanks!