[ac720d]: / src / utils.py

Download this file

178 lines (164 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import sys
import math
import scanpy as sc
from scipy import stats, spatial, sparse
from scipy.linalg import norm
from sklearn.metrics.pairwise import euclidean_distances
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.utils.data as data
from sklearn.neighbors import kneighbors_graph
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
from sklearn.utils.linear_assignment_ import linear_assignment
ind = linear_assignment(w.max() - w)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
def GetCluster(X, res, n):
adata0=sc.AnnData(X)
if adata0.shape[0]>200000:
np.random.seed(adata0.shape[0])#set seed
adata0=adata0[np.random.choice(adata0.shape[0],200000,replace=False)]
sc.pp.neighbors(adata0, n_neighbors=n, use_rep="X")
sc.tl.louvain(adata0,resolution=res)
Y_pred_init=adata0.obs['louvain']
Y_pred_init=np.asarray(Y_pred_init,dtype=int)
if np.unique(Y_pred_init).shape[0]<=1:
#avoid only a cluster
exit("Error: There is only a cluster detected. The resolution:"+str(res)+"is too small, please choose a larger resolution!!")
else:
print("Estimated n_clusters is: ", np.shape(np.unique(Y_pred_init))[0])
return(np.shape(np.unique(Y_pred_init))[0])
def torch_PCA(X, k, center=True, scale=False):
X = X.t()
n,p = X.size()
ones = torch.ones(n).cuda().view([n,1])
h = ((1/n) * torch.mm(ones, ones.t())) if center else torch.zeros(n*n).view([n,n])
H = torch.eye(n).cuda() - h
X_center = torch.mm(H.double(), X.double())
covariance = 1/(n-1) * torch.mm(X_center.t(), X_center).view(p,p)
scaling = torch.sqrt(1/torch.diag(covariance)).double() if scale else torch.ones(p).cuda().double()
scaled_covariance = torch.mm(torch.diag(scaling).view(p,p), covariance)
eigenvalues, eigenvectors = torch.eig(scaled_covariance, True)
components = (eigenvectors[:, :k])
#explained_variance = eigenvalues[:k, 0]
return components
def best_map(L1,L2):
#L1 should be the groundtruth labels and L2 should be the clustering labels we got
Label1 = np.unique(L1)
nClass1 = len(Label1)
Label2 = np.unique(L2)
nClass2 = len(Label2)
nClass = np.maximum(nClass1,nClass2)
G = np.zeros((nClass,nClass))
for i in range(nClass1):
ind_cla1 = L1 == Label1[i]
ind_cla1 = ind_cla1.astype(float)
for j in range(nClass2):
ind_cla2 = L2 == Label2[j]
ind_cla2 = ind_cla2.astype(float)
G[i,j] = np.sum(ind_cla2 * ind_cla1)
m = Munkres()
index = m.compute(-G.T)
index = np.array(index)
c = index[:,1]
newL2 = np.zeros(L2.shape)
for i in range(nClass2):
newL2[L2 == Label2[i]] = Label1[c[i]]
return newL2
def geneSelection(data, threshold=0, atleast=10,
yoffset=.02, xoffset=5, decay=1.5, n=None,
plot=True, markers=None, genes=None, figsize=(6,3.5),
markeroffsets=None, labelsize=10, alpha=1, verbose=1):
if sparse.issparse(data):
zeroRate = 1 - np.squeeze(np.array((data>threshold).mean(axis=0)))
A = data.multiply(data>threshold)
A.data = np.log2(A.data)
meanExpr = np.zeros_like(zeroRate) * np.nan
detected = zeroRate < 1
meanExpr[detected] = np.squeeze(np.array(A[:,detected].mean(axis=0))) / (1-zeroRate[detected])
else:
zeroRate = 1 - np.mean(data>threshold, axis=0)
meanExpr = np.zeros_like(zeroRate) * np.nan
detected = zeroRate < 1
mask = data[:,detected]>threshold
logs = np.zeros_like(data[:,detected]) * np.nan
logs[mask] = np.log2(data[:,detected][mask])
meanExpr[detected] = np.nanmean(logs, axis=0)
lowDetection = np.array(np.sum(data>threshold, axis=0)).squeeze() < atleast
zeroRate[lowDetection] = np.nan
meanExpr[lowDetection] = np.nan
if n is not None:
up = 10
low = 0
for t in range(100):
nonan = ~np.isnan(zeroRate)
selected = np.zeros_like(zeroRate).astype(bool)
selected[nonan] = zeroRate[nonan] > np.exp(-decay*(meanExpr[nonan] - xoffset)) + yoffset
if np.sum(selected) == n:
break
elif np.sum(selected) < n:
up = xoffset
xoffset = (xoffset + low)/2
else:
low = xoffset
xoffset = (xoffset + up)/2
if verbose>0:
print('Chosen offset: {:.2f}'.format(xoffset))
else:
nonan = ~np.isnan(zeroRate)
selected = np.zeros_like(zeroRate).astype(bool)
selected[nonan] = zeroRate[nonan] > np.exp(-decay*(meanExpr[nonan] - xoffset)) + yoffset
if plot:
if figsize is not None:
plt.figure(figsize=figsize)
plt.ylim([0, 1])
if threshold>0:
plt.xlim([np.log2(threshold), np.ceil(np.nanmax(meanExpr))])
else:
plt.xlim([0, np.ceil(np.nanmax(meanExpr))])
x = np.arange(plt.xlim()[0], plt.xlim()[1]+.1,.1)
y = np.exp(-decay*(x - xoffset)) + yoffset
if decay==1:
plt.text(.4, 0.2, '{} genes selected\ny = exp(-x+{:.2f})+{:.2f}'.format(np.sum(selected),xoffset, yoffset),
color='k', fontsize=labelsize, transform=plt.gca().transAxes)
else:
plt.text(.4, 0.2, '{} genes selected\ny = exp(-{:.1f}*(x-{:.2f}))+{:.2f}'.format(np.sum(selected),decay,xoffset, yoffset),
color='k', fontsize=labelsize, transform=plt.gca().transAxes)
plt.plot(x, y, color=sns.color_palette()[1], linewidth=2)
xy = np.concatenate((np.concatenate((x[:,None],y[:,None]),axis=1), np.array([[plt.xlim()[1], 1]])))
t = plt.matplotlib.patches.Polygon(xy, color=sns.color_palette()[1], alpha=.4)
plt.gca().add_patch(t)
plt.scatter(meanExpr, zeroRate, s=1, alpha=alpha, rasterized=True)
if threshold==0:
plt.xlabel('Mean log2 nonzero expression')
plt.ylabel('Frequency of zero expression')
else:
plt.xlabel('Mean log2 nonzero expression')
plt.ylabel('Frequency of near-zero expression')
plt.tight_layout()
if markers is not None and genes is not None:
if markeroffsets is None:
markeroffsets = [(0, 0) for g in markers]
for num,g in enumerate(markers):
i = np.where(genes==g)[0]
plt.scatter(meanExpr[i], zeroRate[i], s=10, color='k')
dx, dy = markeroffsets[num]
plt.text(meanExpr[i]+dx+.1, zeroRate[i]+dy, g, color='k', fontsize=labelsize)
return selected