from sklearn.metrics.pairwise import paired_distances
from sklearn.decomposition import PCA
from sklearn import metrics
from sklearn.cluster import KMeans
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import Parameter
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from layers import NBLoss, ZINBLoss, MeanAct, DispAct
import numpy as np
import math, os
from utils import torch_PCA
from preprocess import read_dataset, normalize
import scanpy as sc
def buildNetwork1(layers, type, activation="relu"):
net = []
for i in range(1, len(layers)):
net.append(nn.Linear(layers[i-1], layers[i]))
if type=="encode" and i==len(layers)-1:
break
if activation=="relu":
net.append(nn.ReLU())
elif activation=="sigmoid":
net.append(nn.Sigmoid())
elif activation=="elu":
net.append(nn.ELU())
return nn.Sequential(*net)
def buildNetwork2(layers, type, activation="relu"):
net = []
for i in range(1, len(layers)):
net.append(nn.Linear(layers[i-1], layers[i]))
net.append(nn.BatchNorm1d(layers[i], affine=True))
if activation=="relu":
net.append(nn.ReLU())
elif activation=="selu":
net.append(nn.SELU())
elif activation=="sigmoid":
net.append(nn.Sigmoid())
elif activation=="elu":
net.append(nn.ELU())
return nn.Sequential(*net)
class scMultiClusterBatch(nn.Module):
def __init__(self, input_dim1, input_dim2, n_batch,
encodeLayer=[], decodeLayer1=[], decodeLayer2=[], tau=1., t=10, device = "cuda",
activation="elu", sigma1=2.5, sigma2=.1, alpha=1., gamma=1., phi1=0.0001, phi2=0.0001, cutoff = 0.5):
super(scMultiClusterBatch, self).__init__()
self.tau=tau
self.input_dim1 = input_dim1
self.input_dim2 = input_dim2
self.cutoff = cutoff
self.activation = activation
self.sigma1 = sigma1
self.sigma2 = sigma2
self.alpha = alpha
self.gamma = gamma
self.phi1 = phi1
self.phi2 = phi2
self.t=t
self.device = device
self.encoder = buildNetwork2([input_dim1+input_dim2+n_batch]+encodeLayer, type="encode", activation=activation)
self.decoder1 = buildNetwork2([decodeLayer1[0]+n_batch]+decodeLayer1[1:], type="decode", activation=activation)
self.decoder2 = buildNetwork2([decodeLayer2[0]+n_batch]+decodeLayer2[1:], type="decode", activation=activation)
self.dec_mean1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), MeanAct())
self.dec_disp1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), DispAct())
self.dec_mean2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), MeanAct())
self.dec_disp2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), DispAct())
self.dec_pi1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), nn.Sigmoid())
self.dec_pi2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), nn.Sigmoid())
self.zinb_loss = ZINBLoss()
self.NBLoss = NBLoss()
self.mse = nn.MSELoss()
self.z_dim = encodeLayer[-1]
def save_model(self, path):
torch.save(self.state_dict(), path)
def load_model(self, path):
pretrained_dict = torch.load(path, map_location=lambda storage, loc: storage)
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
def soft_assign(self, z):
q = 1.0 / (1.0 + torch.sum((z.unsqueeze(1) - self.mu)**2, dim=2) / self.alpha)
q = q**((self.alpha+1.0)/2.0)
q = (q.t() / torch.sum(q, dim=1)).t()
return q
def cal_latent(self, z):
sum_y = torch.sum(torch.square(z), dim=1)
num = -2.0 * torch.matmul(z, z.t()) + torch.reshape(sum_y, [-1, 1]) + sum_y
num = num / self.alpha
num = torch.pow(1.0 + num, -(self.alpha + 1.0) / 2.0)
zerodiag_num = num - torch.diag(torch.diag(num))
latent_p = (zerodiag_num.t() / torch.sum(zerodiag_num, dim=1)).t()
return num, latent_p
def target_distribution(self, q):
p = q**2 / q.sum(0)
return (p.t() / p.sum(1)).t()
def kmeans_loss(self, z):
dist1 = self.tau * torch.sum(torch.square(z.unsqueeze(1) - self.mu), dim=2)
temp_dist1 = dist1 - torch.reshape(torch.mean(dist1, dim=1), [-1, 1])
q = torch.exp(-temp_dist1)
q = (q.t() / torch.sum(q, dim=1)).t()
q = torch.pow(q, 2)
q = (q.t() / torch.sum(q, dim=1)).t()
dist2 = dist1 * q
return dist1, torch.mean(torch.sum(dist2, dim=1))
def forward(self, x1, x2, b):
x = torch.cat([x1+torch.randn_like(x1)*self.sigma1, x2+torch.randn_like(x2)*self.sigma2], dim=-1)
h = self.encoder(torch.cat([x, b], dim=-1))
h = torch.cat([h, b], dim=-1)
h1 = self.decoder1(h)
mean1 = self.dec_mean1(h1)
disp1 = self.dec_disp1(h1)
pi1 = self.dec_pi1(h1)
h2 = self.decoder2(h)
mean2 = self.dec_mean2(h2)
disp2 = self.dec_disp2(h2)
pi2 = self.dec_pi2(h2)
x0 = torch.cat([x1, x2], dim=-1)
h0 = self.encoder(torch.cat([x0, b], dim=-1))
q = self.soft_assign(h0)
num, lq = self.cal_latent(h0)
return h0, q, num, lq, mean1, mean2, disp1, disp2, pi1, pi2
def forwardAE(self, x1, x2, b):
x = torch.cat([x1+torch.randn_like(x1)*self.sigma1, x2+torch.randn_like(x2)*self.sigma2], dim=-1)
h = self.encoder(torch.cat([x, b], dim=-1))
h = torch.cat([h, b], dim=-1)
h1 = self.decoder1(h)
mean1 = self.dec_mean1(h1)
disp1 = self.dec_disp1(h1)
pi1 = self.dec_pi1(h1)
h2 = self.decoder2(h)
mean2 = self.dec_mean2(h2)
disp2 = self.dec_disp2(h2)
pi2 = self.dec_pi2(h2)
x0 = torch.cat([x1, x2], dim=-1)
h0 = self.encoder(torch.cat([x0, b], dim=-1))
num, lq = self.cal_latent(h0)
return h0, num, lq, mean1, mean2, disp1, disp2, pi1, pi2
def encodeBatch(self, X1, X2, B, batch_size=256):
use_cuda = torch.cuda.is_available()
if use_cuda:
self.to(self.device)
encoded = []
self.eval()
num = X1.shape[0]
num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size))
for batch_idx in range(num_batch):
x1batch = X1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x2batch = X2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
b_batch = B[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
inputs1 = Variable(x1batch).to(self.device)
inputs2 = Variable(x2batch).to(self.device)
b_tensor = Variable(b_batch).to(self.device)
z,_,_,_,_,_,_,_,_ = self.forwardAE(inputs1.float(), inputs2.float(), b_tensor.float())
encoded.append(z.data)
encoded = torch.cat(encoded, dim=0)
return encoded
def cluster_loss(self, p, q):
def kld(target, pred):
return torch.mean(torch.sum(target*torch.log(target/(pred+1e-6)), dim=-1))
kldloss = kld(p, q)
return kldloss
def kldloss(self, p, q):
c1 = -torch.sum(p * torch.log(q), dim=-1)
c2 = -torch.sum(p * torch.log(p), dim=-1)
return torch.mean(c1 - c2)
def SDis_func(self, x, y):
return torch.sum(torch.square(x - y), dim=1)
def pretrain_autoencoder(self, X1, X_raw1, sf1, X2, X_raw2, sf2, B,
batch_size=256, lr=0.001, epochs=400, ae_save=True, ae_weights='AE_weights.pth.tar'):
num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size))
dataset = TensorDataset(torch.Tensor(X1), torch.Tensor(X_raw1), torch.Tensor(sf1), torch.Tensor(X2), torch.Tensor(X_raw2), torch.Tensor(sf2), torch.Tensor(B))
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
print("Pretraining stage")
optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=lr, amsgrad=True)
counts = 0
for epoch in range(epochs):
loss_val = 0
recon_loss1_val = 0
recon_loss2_val = 0
kl_loss_val = 0
for batch_idx, (x1_batch, x_raw1_batch, sf1_batch, x2_batch, x_raw2_batch, sf2_batch, b_batch) in enumerate(dataloader):
x1_tensor = Variable(x1_batch).to(self.device)
x_raw1_tensor = Variable(x_raw1_batch).to(self.device)
sf1_tensor = Variable(sf1_batch).to(self.device)
x2_tensor = Variable(x2_batch).to(self.device)
x_raw2_tensor = Variable(x_raw2_batch).to(self.device)
sf2_tensor = Variable(sf2_batch).to(self.device)
b_tensor = Variable(b_batch).to(self.device)
zbatch, z_num, lqbatch, mean1_tensor, mean2_tensor, disp1_tensor, disp2_tensor, pi1_tensor, pi2_tensor = self.forwardAE(x1_tensor, x2_tensor, b_tensor)
#recon_loss1 = self.mse(mean1_tensor, x1_tensor)
recon_loss1 = self.zinb_loss(x=x_raw1_tensor, mean=mean1_tensor, disp=disp1_tensor, pi=pi1_tensor, scale_factor=sf1_tensor)
#recon_loss2 = self.mse(mean2_tensor, x2_tensor)
recon_loss2 = self.zinb_loss(x=x_raw2_tensor, mean=mean2_tensor, disp=disp2_tensor, pi=pi2_tensor, scale_factor=sf2_tensor)
lpbatch = self.target_distribution(lqbatch)
lqbatch = lqbatch + torch.diag(torch.diag(z_num))
lpbatch = lpbatch + torch.diag(torch.diag(z_num))
kl_loss = self.kldloss(lpbatch, lqbatch)
if epoch+1 >= epochs * self.cutoff:
loss = recon_loss1 + recon_loss2 + kl_loss * self.phi1
else:
loss = recon_loss1 + recon_loss2 #+ kl_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_val += loss.item() * len(x1_batch)
recon_loss1_val += recon_loss1.item() * len(x1_batch)
recon_loss2_val += recon_loss2.item() * len(x1_batch)
if epoch+1 >= epochs * self.cutoff:
kl_loss_val += kl_loss.item() * len(x1_batch)
loss_val = loss_val/X1.shape[0]
recon_loss1_val = loss_val/X1.shape[0]
recon_loss2_val = recon_loss2_val/X1.shape[0]
kl_loss_val = kl_loss_val/X1.shape[0]
if epoch%self.t == 0:
print('Pretrain epoch {}, Total loss:{:.6f}, ZINB loss:{:.6f}, NB loss:{:.6f}, KL loss:{:.6f}'.format(epoch+1, loss_val, recon_loss1_val, recon_loss2_val, kl_loss_val))
if ae_save:
torch.save({'ae_state_dict': self.state_dict(),
'optimizer_state_dict': optimizer.state_dict()}, ae_weights)
def save_checkpoint(self, state, index, filename):
newfilename = os.path.join(filename, 'FTcheckpoint_%d.pth.tar' % index)
torch.save(state, newfilename)
def fit(self, X1, X_raw1, sf1, X2, X_raw2, sf2, B, y=None, lr=1., n_clusters = 4,
batch_size=256, num_epochs=10, update_interval=1, tol=1e-3, save_dir=""):
'''X: tensor data'''
use_cuda = torch.cuda.is_available()
if use_cuda:
self.to(self.device)
print("Clustering stage")
X1 = torch.tensor(X1).to(self.device)
X_raw1 = torch.tensor(X_raw1).to(self.device)
sf1 = torch.tensor(sf1).to(self.device)
X2 = torch.tensor(X2).to(self.device)
X_raw2 = torch.tensor(X_raw2).to(self.device)
sf2 = torch.tensor(sf2).to(self.device)
B = torch.tensor(B).to(self.device)
self.mu = Parameter(torch.Tensor(n_clusters, self.z_dim), requires_grad=True)
optimizer = optim.Adadelta(filter(lambda p: p.requires_grad, self.parameters()), lr=lr, rho=.95)
#optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=0.001)
print("Initializing cluster centers with kmeans.")
kmeans = KMeans(n_clusters, n_init=20)
Zdata = self.encodeBatch(X1, X2, B, batch_size=batch_size)
#latent
self.y_pred = kmeans.fit_predict(Zdata.data.cpu().numpy())
self.y_pred_last = self.y_pred
self.mu.data.copy_(torch.Tensor(kmeans.cluster_centers_))
if y is not None:
ami = np.round(metrics.adjusted_mutual_info_score(y, self.y_pred), 5)
nmi = np.round(metrics.normalized_mutual_info_score(y, self.y_pred), 5)
ari = np.round(metrics.adjusted_rand_score(y, self.y_pred), 5)
print('Initializing k-means: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (ami, nmi, ari))
self.train()
num = X1.shape[0]
num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size))
final_nmi, final_ari, final_epoch = 0, 0, 0
for epoch in range(num_epochs):
if epoch%update_interval == 0:
# update the targe distribution p
Zdata = self.encodeBatch(X1, X2, B, batch_size=batch_size)
# evalute the clustering performance
dist, _ = self.kmeans_loss(Zdata)
self.y_pred = torch.argmin(dist, dim=1).data.cpu().numpy()
if y is not None:
#acc2 = np.round(cluster_acc(y, self.y_pred), 5)
final_ami = ami = np.round(metrics.adjusted_mutual_info_score(y, self.y_pred), 5)
final_nmi = nmi = np.round(metrics.normalized_mutual_info_score(y, self.y_pred), 5)
final_ari = ari = np.round(metrics.adjusted_rand_score(y, self.y_pred), 5)
final_epoch = epoch+1
print('Clustering %d: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (epoch+1, ami, nmi, ari))
# check stop criterion
delta_label = np.sum(self.y_pred != self.y_pred_last).astype(np.float32) / num
self.y_pred_last = self.y_pred
if epoch>0 and delta_label < tol:
print('delta_label ', delta_label, '< tol ', tol)
print("Reach tolerance threshold. Stopping training.")
break
# save current model
# if (epoch>0 and delta_label < tol) or epoch%10 == 0:
# self.save_checkpoint({'epoch': epoch+1,
# 'state_dict': self.state_dict(),
# 'mu': self.mu,
# 'y_pred': self.y_pred,
# 'y_pred_last': self.y_pred_last,
# 'y': y
# }, epoch+1, filename=save_dir)
# train 1 epoch for clustering loss
train_loss = 0.0
recon_loss1_val = 0.0
recon_loss2_val = 0.0
recon_loss_latent_val = 0.0
cluster_loss_val = 0.0
kl_loss_val = 0.0
for batch_idx in range(num_batch):
x1_batch = X1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x_raw1_batch = X_raw1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
sf1_batch = sf1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x2_batch = X2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x_raw2_batch = X_raw2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
sf2_batch = sf2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
b_batch = B[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
optimizer.zero_grad()
inputs1 = Variable(x1_batch)
rawinputs1 = Variable(x_raw1_batch)
sfinputs1 = Variable(sf1_batch)
inputs2 = Variable(x2_batch)
rawinputs2 = Variable(x_raw2_batch)
sfinputs2 = Variable(sf2_batch)
zbatch, qbatch, z_num, lqbatch, mean1_tensor, mean2_tensor, disp1_tensor, disp2_tensor, pi1_tensor, pi2_tensor = self.forward(inputs1.float(), inputs2.float(), b_batch.float())
_, cluster_loss = self.kmeans_loss(zbatch)
recon_loss1 = self.zinb_loss(x=rawinputs1, mean=mean1_tensor, disp=disp1_tensor, pi=pi1_tensor, scale_factor=sfinputs1)
recon_loss2 = self.zinb_loss(x=rawinputs2, mean=mean2_tensor, disp=disp2_tensor, pi=pi2_tensor, scale_factor=sfinputs2)
target2 = self.target_distribution(lqbatch)
lqbatch = lqbatch + torch.diag(torch.diag(z_num))
target2 = target2 + torch.diag(torch.diag(z_num))
kl_loss = self.kldloss(target2, lqbatch)
loss = cluster_loss * self.gamma + kl_loss * self.phi2 + recon_loss1 + recon_loss2
loss.backward()
torch.nn.utils.clip_grad_norm_(self.mu, 1)
optimizer.step()
cluster_loss_val += cluster_loss.data * len(inputs1)
recon_loss1_val += recon_loss1.data * len(inputs1)
recon_loss2_val += recon_loss2.data * len(inputs2)
kl_loss_val += kl_loss.data * len(inputs1)
loss_val = cluster_loss_val + recon_loss1_val + recon_loss2_val + kl_loss_val
if epoch%self.t == 0:
print("#Epoch %d: Total: %.6f Clustering Loss: %.6f ZINB Loss: %.6f ZINB Loss2: %.6f KL Loss: %.6f" % (
epoch + 1, loss_val / num, cluster_loss_val / num, recon_loss1_val / num, recon_loss2_val / num, kl_loss_val / num))
return self.y_pred, final_epoch