[ac720d]: / src / scMDC_batch.py

Download this file

376 lines (331 with data), 18.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from sklearn.metrics.pairwise import paired_distances
from sklearn.decomposition import PCA
from sklearn import metrics
from sklearn.cluster import KMeans
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import Parameter
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from layers import NBLoss, ZINBLoss, MeanAct, DispAct
import numpy as np
import math, os
from utils import torch_PCA
from preprocess import read_dataset, normalize
import scanpy as sc
def buildNetwork1(layers, type, activation="relu"):
net = []
for i in range(1, len(layers)):
net.append(nn.Linear(layers[i-1], layers[i]))
if type=="encode" and i==len(layers)-1:
break
if activation=="relu":
net.append(nn.ReLU())
elif activation=="sigmoid":
net.append(nn.Sigmoid())
elif activation=="elu":
net.append(nn.ELU())
return nn.Sequential(*net)
def buildNetwork2(layers, type, activation="relu"):
net = []
for i in range(1, len(layers)):
net.append(nn.Linear(layers[i-1], layers[i]))
net.append(nn.BatchNorm1d(layers[i], affine=True))
if activation=="relu":
net.append(nn.ReLU())
elif activation=="selu":
net.append(nn.SELU())
elif activation=="sigmoid":
net.append(nn.Sigmoid())
elif activation=="elu":
net.append(nn.ELU())
return nn.Sequential(*net)
class scMultiClusterBatch(nn.Module):
def __init__(self, input_dim1, input_dim2, n_batch,
encodeLayer=[], decodeLayer1=[], decodeLayer2=[], tau=1., t=10, device = "cuda",
activation="elu", sigma1=2.5, sigma2=.1, alpha=1., gamma=1., phi1=0.0001, phi2=0.0001, cutoff = 0.5):
super(scMultiClusterBatch, self).__init__()
self.tau=tau
self.input_dim1 = input_dim1
self.input_dim2 = input_dim2
self.cutoff = cutoff
self.activation = activation
self.sigma1 = sigma1
self.sigma2 = sigma2
self.alpha = alpha
self.gamma = gamma
self.phi1 = phi1
self.phi2 = phi2
self.t=t
self.device = device
self.encoder = buildNetwork2([input_dim1+input_dim2+n_batch]+encodeLayer, type="encode", activation=activation)
self.decoder1 = buildNetwork2([decodeLayer1[0]+n_batch]+decodeLayer1[1:], type="decode", activation=activation)
self.decoder2 = buildNetwork2([decodeLayer2[0]+n_batch]+decodeLayer2[1:], type="decode", activation=activation)
self.dec_mean1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), MeanAct())
self.dec_disp1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), DispAct())
self.dec_mean2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), MeanAct())
self.dec_disp2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), DispAct())
self.dec_pi1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), nn.Sigmoid())
self.dec_pi2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), nn.Sigmoid())
self.zinb_loss = ZINBLoss()
self.NBLoss = NBLoss()
self.mse = nn.MSELoss()
self.z_dim = encodeLayer[-1]
def save_model(self, path):
torch.save(self.state_dict(), path)
def load_model(self, path):
pretrained_dict = torch.load(path, map_location=lambda storage, loc: storage)
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
def soft_assign(self, z):
q = 1.0 / (1.0 + torch.sum((z.unsqueeze(1) - self.mu)**2, dim=2) / self.alpha)
q = q**((self.alpha+1.0)/2.0)
q = (q.t() / torch.sum(q, dim=1)).t()
return q
def cal_latent(self, z):
sum_y = torch.sum(torch.square(z), dim=1)
num = -2.0 * torch.matmul(z, z.t()) + torch.reshape(sum_y, [-1, 1]) + sum_y
num = num / self.alpha
num = torch.pow(1.0 + num, -(self.alpha + 1.0) / 2.0)
zerodiag_num = num - torch.diag(torch.diag(num))
latent_p = (zerodiag_num.t() / torch.sum(zerodiag_num, dim=1)).t()
return num, latent_p
def target_distribution(self, q):
p = q**2 / q.sum(0)
return (p.t() / p.sum(1)).t()
def kmeans_loss(self, z):
dist1 = self.tau * torch.sum(torch.square(z.unsqueeze(1) - self.mu), dim=2)
temp_dist1 = dist1 - torch.reshape(torch.mean(dist1, dim=1), [-1, 1])
q = torch.exp(-temp_dist1)
q = (q.t() / torch.sum(q, dim=1)).t()
q = torch.pow(q, 2)
q = (q.t() / torch.sum(q, dim=1)).t()
dist2 = dist1 * q
return dist1, torch.mean(torch.sum(dist2, dim=1))
def forward(self, x1, x2, b):
x = torch.cat([x1+torch.randn_like(x1)*self.sigma1, x2+torch.randn_like(x2)*self.sigma2], dim=-1)
h = self.encoder(torch.cat([x, b], dim=-1))
h = torch.cat([h, b], dim=-1)
h1 = self.decoder1(h)
mean1 = self.dec_mean1(h1)
disp1 = self.dec_disp1(h1)
pi1 = self.dec_pi1(h1)
h2 = self.decoder2(h)
mean2 = self.dec_mean2(h2)
disp2 = self.dec_disp2(h2)
pi2 = self.dec_pi2(h2)
x0 = torch.cat([x1, x2], dim=-1)
h0 = self.encoder(torch.cat([x0, b], dim=-1))
q = self.soft_assign(h0)
num, lq = self.cal_latent(h0)
return h0, q, num, lq, mean1, mean2, disp1, disp2, pi1, pi2
def forwardAE(self, x1, x2, b):
x = torch.cat([x1+torch.randn_like(x1)*self.sigma1, x2+torch.randn_like(x2)*self.sigma2], dim=-1)
h = self.encoder(torch.cat([x, b], dim=-1))
h = torch.cat([h, b], dim=-1)
h1 = self.decoder1(h)
mean1 = self.dec_mean1(h1)
disp1 = self.dec_disp1(h1)
pi1 = self.dec_pi1(h1)
h2 = self.decoder2(h)
mean2 = self.dec_mean2(h2)
disp2 = self.dec_disp2(h2)
pi2 = self.dec_pi2(h2)
x0 = torch.cat([x1, x2], dim=-1)
h0 = self.encoder(torch.cat([x0, b], dim=-1))
num, lq = self.cal_latent(h0)
return h0, num, lq, mean1, mean2, disp1, disp2, pi1, pi2
def encodeBatch(self, X1, X2, B, batch_size=256):
use_cuda = torch.cuda.is_available()
if use_cuda:
self.to(self.device)
encoded = []
self.eval()
num = X1.shape[0]
num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size))
for batch_idx in range(num_batch):
x1batch = X1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x2batch = X2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
b_batch = B[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
inputs1 = Variable(x1batch).to(self.device)
inputs2 = Variable(x2batch).to(self.device)
b_tensor = Variable(b_batch).to(self.device)
z,_,_,_,_,_,_,_,_ = self.forwardAE(inputs1.float(), inputs2.float(), b_tensor.float())
encoded.append(z.data)
encoded = torch.cat(encoded, dim=0)
return encoded
def cluster_loss(self, p, q):
def kld(target, pred):
return torch.mean(torch.sum(target*torch.log(target/(pred+1e-6)), dim=-1))
kldloss = kld(p, q)
return kldloss
def kldloss(self, p, q):
c1 = -torch.sum(p * torch.log(q), dim=-1)
c2 = -torch.sum(p * torch.log(p), dim=-1)
return torch.mean(c1 - c2)
def SDis_func(self, x, y):
return torch.sum(torch.square(x - y), dim=1)
def pretrain_autoencoder(self, X1, X_raw1, sf1, X2, X_raw2, sf2, B,
batch_size=256, lr=0.001, epochs=400, ae_save=True, ae_weights='AE_weights.pth.tar'):
num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size))
dataset = TensorDataset(torch.Tensor(X1), torch.Tensor(X_raw1), torch.Tensor(sf1), torch.Tensor(X2), torch.Tensor(X_raw2), torch.Tensor(sf2), torch.Tensor(B))
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
print("Pretraining stage")
optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=lr, amsgrad=True)
counts = 0
for epoch in range(epochs):
loss_val = 0
recon_loss1_val = 0
recon_loss2_val = 0
kl_loss_val = 0
for batch_idx, (x1_batch, x_raw1_batch, sf1_batch, x2_batch, x_raw2_batch, sf2_batch, b_batch) in enumerate(dataloader):
x1_tensor = Variable(x1_batch).to(self.device)
x_raw1_tensor = Variable(x_raw1_batch).to(self.device)
sf1_tensor = Variable(sf1_batch).to(self.device)
x2_tensor = Variable(x2_batch).to(self.device)
x_raw2_tensor = Variable(x_raw2_batch).to(self.device)
sf2_tensor = Variable(sf2_batch).to(self.device)
b_tensor = Variable(b_batch).to(self.device)
zbatch, z_num, lqbatch, mean1_tensor, mean2_tensor, disp1_tensor, disp2_tensor, pi1_tensor, pi2_tensor = self.forwardAE(x1_tensor, x2_tensor, b_tensor)
#recon_loss1 = self.mse(mean1_tensor, x1_tensor)
recon_loss1 = self.zinb_loss(x=x_raw1_tensor, mean=mean1_tensor, disp=disp1_tensor, pi=pi1_tensor, scale_factor=sf1_tensor)
#recon_loss2 = self.mse(mean2_tensor, x2_tensor)
recon_loss2 = self.zinb_loss(x=x_raw2_tensor, mean=mean2_tensor, disp=disp2_tensor, pi=pi2_tensor, scale_factor=sf2_tensor)
lpbatch = self.target_distribution(lqbatch)
lqbatch = lqbatch + torch.diag(torch.diag(z_num))
lpbatch = lpbatch + torch.diag(torch.diag(z_num))
kl_loss = self.kldloss(lpbatch, lqbatch)
if epoch+1 >= epochs * self.cutoff:
loss = recon_loss1 + recon_loss2 + kl_loss * self.phi1
else:
loss = recon_loss1 + recon_loss2 #+ kl_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_val += loss.item() * len(x1_batch)
recon_loss1_val += recon_loss1.item() * len(x1_batch)
recon_loss2_val += recon_loss2.item() * len(x1_batch)
if epoch+1 >= epochs * self.cutoff:
kl_loss_val += kl_loss.item() * len(x1_batch)
loss_val = loss_val/X1.shape[0]
recon_loss1_val = loss_val/X1.shape[0]
recon_loss2_val = recon_loss2_val/X1.shape[0]
kl_loss_val = kl_loss_val/X1.shape[0]
if epoch%self.t == 0:
print('Pretrain epoch {}, Total loss:{:.6f}, ZINB loss:{:.6f}, NB loss:{:.6f}, KL loss:{:.6f}'.format(epoch+1, loss_val, recon_loss1_val, recon_loss2_val, kl_loss_val))
if ae_save:
torch.save({'ae_state_dict': self.state_dict(),
'optimizer_state_dict': optimizer.state_dict()}, ae_weights)
def save_checkpoint(self, state, index, filename):
newfilename = os.path.join(filename, 'FTcheckpoint_%d.pth.tar' % index)
torch.save(state, newfilename)
def fit(self, X1, X_raw1, sf1, X2, X_raw2, sf2, B, y=None, lr=1., n_clusters = 4,
batch_size=256, num_epochs=10, update_interval=1, tol=1e-3, save_dir=""):
'''X: tensor data'''
use_cuda = torch.cuda.is_available()
if use_cuda:
self.to(self.device)
print("Clustering stage")
X1 = torch.tensor(X1).to(self.device)
X_raw1 = torch.tensor(X_raw1).to(self.device)
sf1 = torch.tensor(sf1).to(self.device)
X2 = torch.tensor(X2).to(self.device)
X_raw2 = torch.tensor(X_raw2).to(self.device)
sf2 = torch.tensor(sf2).to(self.device)
B = torch.tensor(B).to(self.device)
self.mu = Parameter(torch.Tensor(n_clusters, self.z_dim), requires_grad=True)
optimizer = optim.Adadelta(filter(lambda p: p.requires_grad, self.parameters()), lr=lr, rho=.95)
#optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=0.001)
print("Initializing cluster centers with kmeans.")
kmeans = KMeans(n_clusters, n_init=20)
Zdata = self.encodeBatch(X1, X2, B, batch_size=batch_size)
#latent
self.y_pred = kmeans.fit_predict(Zdata.data.cpu().numpy())
self.y_pred_last = self.y_pred
self.mu.data.copy_(torch.Tensor(kmeans.cluster_centers_))
if y is not None:
ami = np.round(metrics.adjusted_mutual_info_score(y, self.y_pred), 5)
nmi = np.round(metrics.normalized_mutual_info_score(y, self.y_pred), 5)
ari = np.round(metrics.adjusted_rand_score(y, self.y_pred), 5)
print('Initializing k-means: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (ami, nmi, ari))
self.train()
num = X1.shape[0]
num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size))
final_nmi, final_ari, final_epoch = 0, 0, 0
for epoch in range(num_epochs):
if epoch%update_interval == 0:
# update the targe distribution p
Zdata = self.encodeBatch(X1, X2, B, batch_size=batch_size)
# evalute the clustering performance
dist, _ = self.kmeans_loss(Zdata)
self.y_pred = torch.argmin(dist, dim=1).data.cpu().numpy()
if y is not None:
#acc2 = np.round(cluster_acc(y, self.y_pred), 5)
final_ami = ami = np.round(metrics.adjusted_mutual_info_score(y, self.y_pred), 5)
final_nmi = nmi = np.round(metrics.normalized_mutual_info_score(y, self.y_pred), 5)
final_ari = ari = np.round(metrics.adjusted_rand_score(y, self.y_pred), 5)
final_epoch = epoch+1
print('Clustering %d: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (epoch+1, ami, nmi, ari))
# check stop criterion
delta_label = np.sum(self.y_pred != self.y_pred_last).astype(np.float32) / num
self.y_pred_last = self.y_pred
if epoch>0 and delta_label < tol:
print('delta_label ', delta_label, '< tol ', tol)
print("Reach tolerance threshold. Stopping training.")
break
# save current model
# if (epoch>0 and delta_label < tol) or epoch%10 == 0:
# self.save_checkpoint({'epoch': epoch+1,
# 'state_dict': self.state_dict(),
# 'mu': self.mu,
# 'y_pred': self.y_pred,
# 'y_pred_last': self.y_pred_last,
# 'y': y
# }, epoch+1, filename=save_dir)
# train 1 epoch for clustering loss
train_loss = 0.0
recon_loss1_val = 0.0
recon_loss2_val = 0.0
recon_loss_latent_val = 0.0
cluster_loss_val = 0.0
kl_loss_val = 0.0
for batch_idx in range(num_batch):
x1_batch = X1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x_raw1_batch = X_raw1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
sf1_batch = sf1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x2_batch = X2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
x_raw2_batch = X_raw2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
sf2_batch = sf2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
b_batch = B[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)]
optimizer.zero_grad()
inputs1 = Variable(x1_batch)
rawinputs1 = Variable(x_raw1_batch)
sfinputs1 = Variable(sf1_batch)
inputs2 = Variable(x2_batch)
rawinputs2 = Variable(x_raw2_batch)
sfinputs2 = Variable(sf2_batch)
zbatch, qbatch, z_num, lqbatch, mean1_tensor, mean2_tensor, disp1_tensor, disp2_tensor, pi1_tensor, pi2_tensor = self.forward(inputs1.float(), inputs2.float(), b_batch.float())
_, cluster_loss = self.kmeans_loss(zbatch)
recon_loss1 = self.zinb_loss(x=rawinputs1, mean=mean1_tensor, disp=disp1_tensor, pi=pi1_tensor, scale_factor=sfinputs1)
recon_loss2 = self.zinb_loss(x=rawinputs2, mean=mean2_tensor, disp=disp2_tensor, pi=pi2_tensor, scale_factor=sfinputs2)
target2 = self.target_distribution(lqbatch)
lqbatch = lqbatch + torch.diag(torch.diag(z_num))
target2 = target2 + torch.diag(torch.diag(z_num))
kl_loss = self.kldloss(target2, lqbatch)
loss = cluster_loss * self.gamma + kl_loss * self.phi2 + recon_loss1 + recon_loss2
loss.backward()
torch.nn.utils.clip_grad_norm_(self.mu, 1)
optimizer.step()
cluster_loss_val += cluster_loss.data * len(inputs1)
recon_loss1_val += recon_loss1.data * len(inputs1)
recon_loss2_val += recon_loss2.data * len(inputs2)
kl_loss_val += kl_loss.data * len(inputs1)
loss_val = cluster_loss_val + recon_loss1_val + recon_loss2_val + kl_loss_val
if epoch%self.t == 0:
print("#Epoch %d: Total: %.6f Clustering Loss: %.6f ZINB Loss: %.6f ZINB Loss2: %.6f KL Loss: %.6f" % (
epoch + 1, loss_val / num, cluster_loss_val / num, recon_loss1_val / num, recon_loss2_val / num, kl_loss_val / num))
return self.y_pred, final_epoch