--- a +++ b/src/scMDC_batch.py @@ -0,0 +1,375 @@ +from sklearn.metrics.pairwise import paired_distances +from sklearn.decomposition import PCA +from sklearn import metrics +from sklearn.cluster import KMeans +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.nn import Parameter +import torch.nn.functional as F +import torch.optim as optim +from torch.utils.data import DataLoader, TensorDataset +from layers import NBLoss, ZINBLoss, MeanAct, DispAct +import numpy as np + +import math, os + +from utils import torch_PCA + +from preprocess import read_dataset, normalize +import scanpy as sc + +def buildNetwork1(layers, type, activation="relu"): + net = [] + for i in range(1, len(layers)): + net.append(nn.Linear(layers[i-1], layers[i])) + if type=="encode" and i==len(layers)-1: + break + if activation=="relu": + net.append(nn.ReLU()) + elif activation=="sigmoid": + net.append(nn.Sigmoid()) + elif activation=="elu": + net.append(nn.ELU()) + return nn.Sequential(*net) + +def buildNetwork2(layers, type, activation="relu"): + net = [] + for i in range(1, len(layers)): + net.append(nn.Linear(layers[i-1], layers[i])) + net.append(nn.BatchNorm1d(layers[i], affine=True)) + if activation=="relu": + net.append(nn.ReLU()) + elif activation=="selu": + net.append(nn.SELU()) + elif activation=="sigmoid": + net.append(nn.Sigmoid()) + elif activation=="elu": + net.append(nn.ELU()) + return nn.Sequential(*net) + +class scMultiClusterBatch(nn.Module): + def __init__(self, input_dim1, input_dim2, n_batch, + encodeLayer=[], decodeLayer1=[], decodeLayer2=[], tau=1., t=10, device = "cuda", + activation="elu", sigma1=2.5, sigma2=.1, alpha=1., gamma=1., phi1=0.0001, phi2=0.0001, cutoff = 0.5): + super(scMultiClusterBatch, self).__init__() + self.tau=tau + self.input_dim1 = input_dim1 + self.input_dim2 = input_dim2 + self.cutoff = cutoff + self.activation = activation + self.sigma1 = sigma1 + self.sigma2 = sigma2 + self.alpha = alpha + self.gamma = gamma + self.phi1 = phi1 + self.phi2 = phi2 + self.t=t + self.device = device + self.encoder = buildNetwork2([input_dim1+input_dim2+n_batch]+encodeLayer, type="encode", activation=activation) + self.decoder1 = buildNetwork2([decodeLayer1[0]+n_batch]+decodeLayer1[1:], type="decode", activation=activation) + self.decoder2 = buildNetwork2([decodeLayer2[0]+n_batch]+decodeLayer2[1:], type="decode", activation=activation) + self.dec_mean1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), MeanAct()) + self.dec_disp1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), DispAct()) + self.dec_mean2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), MeanAct()) + self.dec_disp2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), DispAct()) + self.dec_pi1 = nn.Sequential(nn.Linear(decodeLayer1[-1], input_dim1), nn.Sigmoid()) + self.dec_pi2 = nn.Sequential(nn.Linear(decodeLayer2[-1], input_dim2), nn.Sigmoid()) + self.zinb_loss = ZINBLoss() + self.NBLoss = NBLoss() + self.mse = nn.MSELoss() + self.z_dim = encodeLayer[-1] + + def save_model(self, path): + torch.save(self.state_dict(), path) + + def load_model(self, path): + pretrained_dict = torch.load(path, map_location=lambda storage, loc: storage) + model_dict = self.state_dict() + pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} + model_dict.update(pretrained_dict) + self.load_state_dict(model_dict) + + def soft_assign(self, z): + q = 1.0 / (1.0 + torch.sum((z.unsqueeze(1) - self.mu)**2, dim=2) / self.alpha) + q = q**((self.alpha+1.0)/2.0) + q = (q.t() / torch.sum(q, dim=1)).t() + return q + + def cal_latent(self, z): + sum_y = torch.sum(torch.square(z), dim=1) + num = -2.0 * torch.matmul(z, z.t()) + torch.reshape(sum_y, [-1, 1]) + sum_y + num = num / self.alpha + num = torch.pow(1.0 + num, -(self.alpha + 1.0) / 2.0) + zerodiag_num = num - torch.diag(torch.diag(num)) + latent_p = (zerodiag_num.t() / torch.sum(zerodiag_num, dim=1)).t() + return num, latent_p + + def target_distribution(self, q): + p = q**2 / q.sum(0) + return (p.t() / p.sum(1)).t() + + def kmeans_loss(self, z): + dist1 = self.tau * torch.sum(torch.square(z.unsqueeze(1) - self.mu), dim=2) + temp_dist1 = dist1 - torch.reshape(torch.mean(dist1, dim=1), [-1, 1]) + q = torch.exp(-temp_dist1) + q = (q.t() / torch.sum(q, dim=1)).t() + q = torch.pow(q, 2) + q = (q.t() / torch.sum(q, dim=1)).t() + dist2 = dist1 * q + return dist1, torch.mean(torch.sum(dist2, dim=1)) + + def forward(self, x1, x2, b): + x = torch.cat([x1+torch.randn_like(x1)*self.sigma1, x2+torch.randn_like(x2)*self.sigma2], dim=-1) + h = self.encoder(torch.cat([x, b], dim=-1)) + h = torch.cat([h, b], dim=-1) + + h1 = self.decoder1(h) + mean1 = self.dec_mean1(h1) + disp1 = self.dec_disp1(h1) + pi1 = self.dec_pi1(h1) + + h2 = self.decoder2(h) + mean2 = self.dec_mean2(h2) + disp2 = self.dec_disp2(h2) + pi2 = self.dec_pi2(h2) + + x0 = torch.cat([x1, x2], dim=-1) + h0 = self.encoder(torch.cat([x0, b], dim=-1)) + q = self.soft_assign(h0) + num, lq = self.cal_latent(h0) + return h0, q, num, lq, mean1, mean2, disp1, disp2, pi1, pi2 + + def forwardAE(self, x1, x2, b): + x = torch.cat([x1+torch.randn_like(x1)*self.sigma1, x2+torch.randn_like(x2)*self.sigma2], dim=-1) + h = self.encoder(torch.cat([x, b], dim=-1)) + h = torch.cat([h, b], dim=-1) + + h1 = self.decoder1(h) + mean1 = self.dec_mean1(h1) + disp1 = self.dec_disp1(h1) + pi1 = self.dec_pi1(h1) + + h2 = self.decoder2(h) + mean2 = self.dec_mean2(h2) + disp2 = self.dec_disp2(h2) + pi2 = self.dec_pi2(h2) + + x0 = torch.cat([x1, x2], dim=-1) + h0 = self.encoder(torch.cat([x0, b], dim=-1)) + num, lq = self.cal_latent(h0) + return h0, num, lq, mean1, mean2, disp1, disp2, pi1, pi2 + + def encodeBatch(self, X1, X2, B, batch_size=256): + use_cuda = torch.cuda.is_available() + if use_cuda: + self.to(self.device) + encoded = [] + self.eval() + num = X1.shape[0] + num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size)) + for batch_idx in range(num_batch): + x1batch = X1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + x2batch = X2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + b_batch = B[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + inputs1 = Variable(x1batch).to(self.device) + inputs2 = Variable(x2batch).to(self.device) + b_tensor = Variable(b_batch).to(self.device) + z,_,_,_,_,_,_,_,_ = self.forwardAE(inputs1.float(), inputs2.float(), b_tensor.float()) + encoded.append(z.data) + + encoded = torch.cat(encoded, dim=0) + return encoded + + def cluster_loss(self, p, q): + def kld(target, pred): + return torch.mean(torch.sum(target*torch.log(target/(pred+1e-6)), dim=-1)) + kldloss = kld(p, q) + return kldloss + + def kldloss(self, p, q): + c1 = -torch.sum(p * torch.log(q), dim=-1) + c2 = -torch.sum(p * torch.log(p), dim=-1) + return torch.mean(c1 - c2) + + def SDis_func(self, x, y): + return torch.sum(torch.square(x - y), dim=1) + + def pretrain_autoencoder(self, X1, X_raw1, sf1, X2, X_raw2, sf2, B, + batch_size=256, lr=0.001, epochs=400, ae_save=True, ae_weights='AE_weights.pth.tar'): + num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size)) + dataset = TensorDataset(torch.Tensor(X1), torch.Tensor(X_raw1), torch.Tensor(sf1), torch.Tensor(X2), torch.Tensor(X_raw2), torch.Tensor(sf2), torch.Tensor(B)) + dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) + print("Pretraining stage") + optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=lr, amsgrad=True) + counts = 0 + for epoch in range(epochs): + loss_val = 0 + recon_loss1_val = 0 + recon_loss2_val = 0 + kl_loss_val = 0 + for batch_idx, (x1_batch, x_raw1_batch, sf1_batch, x2_batch, x_raw2_batch, sf2_batch, b_batch) in enumerate(dataloader): + x1_tensor = Variable(x1_batch).to(self.device) + x_raw1_tensor = Variable(x_raw1_batch).to(self.device) + sf1_tensor = Variable(sf1_batch).to(self.device) + x2_tensor = Variable(x2_batch).to(self.device) + x_raw2_tensor = Variable(x_raw2_batch).to(self.device) + sf2_tensor = Variable(sf2_batch).to(self.device) + b_tensor = Variable(b_batch).to(self.device) + zbatch, z_num, lqbatch, mean1_tensor, mean2_tensor, disp1_tensor, disp2_tensor, pi1_tensor, pi2_tensor = self.forwardAE(x1_tensor, x2_tensor, b_tensor) + #recon_loss1 = self.mse(mean1_tensor, x1_tensor) + recon_loss1 = self.zinb_loss(x=x_raw1_tensor, mean=mean1_tensor, disp=disp1_tensor, pi=pi1_tensor, scale_factor=sf1_tensor) + #recon_loss2 = self.mse(mean2_tensor, x2_tensor) + recon_loss2 = self.zinb_loss(x=x_raw2_tensor, mean=mean2_tensor, disp=disp2_tensor, pi=pi2_tensor, scale_factor=sf2_tensor) + lpbatch = self.target_distribution(lqbatch) + lqbatch = lqbatch + torch.diag(torch.diag(z_num)) + lpbatch = lpbatch + torch.diag(torch.diag(z_num)) + kl_loss = self.kldloss(lpbatch, lqbatch) + if epoch+1 >= epochs * self.cutoff: + loss = recon_loss1 + recon_loss2 + kl_loss * self.phi1 + else: + loss = recon_loss1 + recon_loss2 #+ kl_loss + optimizer.zero_grad() + loss.backward() + optimizer.step() + + loss_val += loss.item() * len(x1_batch) + recon_loss1_val += recon_loss1.item() * len(x1_batch) + recon_loss2_val += recon_loss2.item() * len(x1_batch) + if epoch+1 >= epochs * self.cutoff: + kl_loss_val += kl_loss.item() * len(x1_batch) + + loss_val = loss_val/X1.shape[0] + recon_loss1_val = loss_val/X1.shape[0] + recon_loss2_val = recon_loss2_val/X1.shape[0] + kl_loss_val = kl_loss_val/X1.shape[0] + if epoch%self.t == 0: + print('Pretrain epoch {}, Total loss:{:.6f}, ZINB loss:{:.6f}, NB loss:{:.6f}, KL loss:{:.6f}'.format(epoch+1, loss_val, recon_loss1_val, recon_loss2_val, kl_loss_val)) + + if ae_save: + torch.save({'ae_state_dict': self.state_dict(), + 'optimizer_state_dict': optimizer.state_dict()}, ae_weights) + + def save_checkpoint(self, state, index, filename): + newfilename = os.path.join(filename, 'FTcheckpoint_%d.pth.tar' % index) + torch.save(state, newfilename) + + def fit(self, X1, X_raw1, sf1, X2, X_raw2, sf2, B, y=None, lr=1., n_clusters = 4, + batch_size=256, num_epochs=10, update_interval=1, tol=1e-3, save_dir=""): + '''X: tensor data''' + use_cuda = torch.cuda.is_available() + if use_cuda: + self.to(self.device) + print("Clustering stage") + X1 = torch.tensor(X1).to(self.device) + X_raw1 = torch.tensor(X_raw1).to(self.device) + sf1 = torch.tensor(sf1).to(self.device) + X2 = torch.tensor(X2).to(self.device) + X_raw2 = torch.tensor(X_raw2).to(self.device) + sf2 = torch.tensor(sf2).to(self.device) + B = torch.tensor(B).to(self.device) + self.mu = Parameter(torch.Tensor(n_clusters, self.z_dim), requires_grad=True) + optimizer = optim.Adadelta(filter(lambda p: p.requires_grad, self.parameters()), lr=lr, rho=.95) + #optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=0.001) + + print("Initializing cluster centers with kmeans.") + kmeans = KMeans(n_clusters, n_init=20) + Zdata = self.encodeBatch(X1, X2, B, batch_size=batch_size) + #latent + self.y_pred = kmeans.fit_predict(Zdata.data.cpu().numpy()) + self.y_pred_last = self.y_pred + self.mu.data.copy_(torch.Tensor(kmeans.cluster_centers_)) + if y is not None: + ami = np.round(metrics.adjusted_mutual_info_score(y, self.y_pred), 5) + nmi = np.round(metrics.normalized_mutual_info_score(y, self.y_pred), 5) + ari = np.round(metrics.adjusted_rand_score(y, self.y_pred), 5) + print('Initializing k-means: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (ami, nmi, ari)) + + self.train() + num = X1.shape[0] + num_batch = int(math.ceil(1.0*X1.shape[0]/batch_size)) + + final_nmi, final_ari, final_epoch = 0, 0, 0 + + for epoch in range(num_epochs): + if epoch%update_interval == 0: + # update the targe distribution p + Zdata = self.encodeBatch(X1, X2, B, batch_size=batch_size) + + # evalute the clustering performance + dist, _ = self.kmeans_loss(Zdata) + self.y_pred = torch.argmin(dist, dim=1).data.cpu().numpy() + + if y is not None: + #acc2 = np.round(cluster_acc(y, self.y_pred), 5) + final_ami = ami = np.round(metrics.adjusted_mutual_info_score(y, self.y_pred), 5) + final_nmi = nmi = np.round(metrics.normalized_mutual_info_score(y, self.y_pred), 5) + final_ari = ari = np.round(metrics.adjusted_rand_score(y, self.y_pred), 5) + final_epoch = epoch+1 + print('Clustering %d: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (epoch+1, ami, nmi, ari)) + + # check stop criterion + delta_label = np.sum(self.y_pred != self.y_pred_last).astype(np.float32) / num + self.y_pred_last = self.y_pred + if epoch>0 and delta_label < tol: + print('delta_label ', delta_label, '< tol ', tol) + print("Reach tolerance threshold. Stopping training.") + break + + # save current model + # if (epoch>0 and delta_label < tol) or epoch%10 == 0: + # self.save_checkpoint({'epoch': epoch+1, + # 'state_dict': self.state_dict(), + # 'mu': self.mu, + # 'y_pred': self.y_pred, + # 'y_pred_last': self.y_pred_last, + # 'y': y + # }, epoch+1, filename=save_dir) + + # train 1 epoch for clustering loss + train_loss = 0.0 + recon_loss1_val = 0.0 + recon_loss2_val = 0.0 + recon_loss_latent_val = 0.0 + cluster_loss_val = 0.0 + kl_loss_val = 0.0 + for batch_idx in range(num_batch): + x1_batch = X1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + x_raw1_batch = X_raw1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + sf1_batch = sf1[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + x2_batch = X2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + x_raw2_batch = X_raw2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + sf2_batch = sf2[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + b_batch = B[batch_idx*batch_size : min((batch_idx+1)*batch_size, num)] + optimizer.zero_grad() + inputs1 = Variable(x1_batch) + rawinputs1 = Variable(x_raw1_batch) + sfinputs1 = Variable(sf1_batch) + inputs2 = Variable(x2_batch) + rawinputs2 = Variable(x_raw2_batch) + sfinputs2 = Variable(sf2_batch) + + zbatch, qbatch, z_num, lqbatch, mean1_tensor, mean2_tensor, disp1_tensor, disp2_tensor, pi1_tensor, pi2_tensor = self.forward(inputs1.float(), inputs2.float(), b_batch.float()) + + _, cluster_loss = self.kmeans_loss(zbatch) + recon_loss1 = self.zinb_loss(x=rawinputs1, mean=mean1_tensor, disp=disp1_tensor, pi=pi1_tensor, scale_factor=sfinputs1) + recon_loss2 = self.zinb_loss(x=rawinputs2, mean=mean2_tensor, disp=disp2_tensor, pi=pi2_tensor, scale_factor=sfinputs2) + target2 = self.target_distribution(lqbatch) + lqbatch = lqbatch + torch.diag(torch.diag(z_num)) + target2 = target2 + torch.diag(torch.diag(z_num)) + kl_loss = self.kldloss(target2, lqbatch) + loss = cluster_loss * self.gamma + kl_loss * self.phi2 + recon_loss1 + recon_loss2 + loss.backward() + torch.nn.utils.clip_grad_norm_(self.mu, 1) + optimizer.step() + cluster_loss_val += cluster_loss.data * len(inputs1) + recon_loss1_val += recon_loss1.data * len(inputs1) + recon_loss2_val += recon_loss2.data * len(inputs2) + kl_loss_val += kl_loss.data * len(inputs1) + loss_val = cluster_loss_val + recon_loss1_val + recon_loss2_val + kl_loss_val + + if epoch%self.t == 0: + print("#Epoch %d: Total: %.6f Clustering Loss: %.6f ZINB Loss: %.6f ZINB Loss2: %.6f KL Loss: %.6f" % ( + epoch + 1, loss_val / num, cluster_loss_val / num, recon_loss1_val / num, recon_loss2_val / num, kl_loss_val / num)) + + return self.y_pred, final_epoch