|
a |
|
b/src/run_scMDC_batch.py |
|
|
1 |
from time import time |
|
|
2 |
import math, os |
|
|
3 |
from sklearn import metrics |
|
|
4 |
from sklearn.cluster import KMeans |
|
|
5 |
from sklearn.preprocessing import OneHotEncoder |
|
|
6 |
import torch |
|
|
7 |
import torch.nn as nn |
|
|
8 |
from torch.autograd import Variable |
|
|
9 |
from torch.nn import Parameter |
|
|
10 |
import torch.nn.functional as F |
|
|
11 |
import torch.optim as optim |
|
|
12 |
from torch.utils.data import DataLoader, TensorDataset |
|
|
13 |
|
|
|
14 |
from scMDC_batch import scMultiClusterBatch |
|
|
15 |
import numpy as np |
|
|
16 |
import collections |
|
|
17 |
import h5py |
|
|
18 |
import scanpy as sc |
|
|
19 |
from preprocess import read_dataset, normalize |
|
|
20 |
from utils import * |
|
|
21 |
|
|
|
22 |
if __name__ == "__main__": |
|
|
23 |
|
|
|
24 |
# setting the hyper parameters |
|
|
25 |
import argparse |
|
|
26 |
parser = argparse.ArgumentParser(description='train', |
|
|
27 |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
|
28 |
parser.add_argument('--n_clusters', default=27, type=int) |
|
|
29 |
parser.add_argument('--cutoff', default=0.5, type=float, help='Start to train combined layer after what ratio of epoch') |
|
|
30 |
parser.add_argument('--batch_size', default=256, type=int) |
|
|
31 |
parser.add_argument('--data_file', default='Normalized_filtered_BMNC_GSE128639_Seurat.h5') |
|
|
32 |
parser.add_argument('--maxiter', default=5000, type=int) |
|
|
33 |
parser.add_argument('--pretrain_epochs', default=400, type=int) |
|
|
34 |
parser.add_argument('--gamma', default=.1, type=float, |
|
|
35 |
help='coefficient of clustering loss') |
|
|
36 |
parser.add_argument('--tau', default=1., type=float, |
|
|
37 |
help='weight of clustering loss') |
|
|
38 |
parser.add_argument('--phi1', default=0.001, type=float, |
|
|
39 |
help='coefficient of KL loss in pretraining stage') |
|
|
40 |
parser.add_argument('--phi2', default=0.001, type=float, |
|
|
41 |
help='coefficient of KL loss in clustering stage') |
|
|
42 |
parser.add_argument('--update_interval', default=1, type=int) |
|
|
43 |
parser.add_argument('--tol', default=0.001, type=float) |
|
|
44 |
parser.add_argument('--lr', default=1., type=float) |
|
|
45 |
parser.add_argument('--ae_weights', default=None) |
|
|
46 |
parser.add_argument('--save_dir', default='results/') |
|
|
47 |
parser.add_argument('--ae_weight_file', default='AE_weights_1.pth.tar') |
|
|
48 |
parser.add_argument('--resolution', default=0.2, type=float) |
|
|
49 |
parser.add_argument('--n_neighbors', default=30, type=int) |
|
|
50 |
parser.add_argument('--embedding_file', action='store_true', default=False) |
|
|
51 |
parser.add_argument('--prediction_file', action='store_true', default=False) |
|
|
52 |
parser.add_argument('-el','--encodeLayer', nargs='+', default=[256,64,32,16]) |
|
|
53 |
parser.add_argument('-dl1','--decodeLayer1', nargs='+', default=[16,64,256]) |
|
|
54 |
parser.add_argument('-dl2','--decodeLayer2', nargs='+', default=[16,20]) |
|
|
55 |
parser.add_argument('--sigma1', default=2.5, type=float) |
|
|
56 |
parser.add_argument('--sigma2', default=1.5, type=float) |
|
|
57 |
parser.add_argument('--f1', default=1000, type=float, help='Number of mRNA after feature selection') |
|
|
58 |
parser.add_argument('--f2', default=2000, type=float, help='Number of ADT/ATAC after feature selection') |
|
|
59 |
parser.add_argument('--filter1', action='store_true', default=False, help='Do mRNA selection') |
|
|
60 |
parser.add_argument('--filter2', action='store_true', default=False, help='Do ADT/ATAC selection') |
|
|
61 |
parser.add_argument('--nbatch', default=2, type=int) |
|
|
62 |
parser.add_argument('--run', default=1, type=int) |
|
|
63 |
parser.add_argument('--device', default='cuda') |
|
|
64 |
parser.add_argument('--no_labels', action='store_true', default=False) |
|
|
65 |
args = parser.parse_args() |
|
|
66 |
print(args) |
|
|
67 |
data_mat = h5py.File(args.data_file) |
|
|
68 |
x1 = np.array(data_mat['X1']) |
|
|
69 |
x2 = np.array(data_mat['X2']) |
|
|
70 |
if not args.no_labels: |
|
|
71 |
y = np.array(data_mat['Y']) |
|
|
72 |
b = np.array(data_mat['Batch']) |
|
|
73 |
enc = OneHotEncoder() |
|
|
74 |
enc.fit(b.reshape(-1, 1)) |
|
|
75 |
B = enc.transform(b.reshape(-1, 1)).toarray() |
|
|
76 |
data_mat.close() |
|
|
77 |
|
|
|
78 |
#Gene filter |
|
|
79 |
if args.filter1: |
|
|
80 |
importantGenes = geneSelection(x1, n=args.f1, plot=False) |
|
|
81 |
x1 = x1[:, importantGenes] |
|
|
82 |
if args.filter2: |
|
|
83 |
importantGenes = geneSelection(x2, n=args.f2, plot=False) |
|
|
84 |
x2 = x2[:, importantGenes] |
|
|
85 |
|
|
|
86 |
# preprocessing scRNA-seq read counts matrix |
|
|
87 |
adata1 = sc.AnnData(x1) |
|
|
88 |
#adata1.obs['Group'] = y |
|
|
89 |
|
|
|
90 |
adata1 = read_dataset(adata1, |
|
|
91 |
transpose=False, |
|
|
92 |
test_split=False, |
|
|
93 |
copy=True) |
|
|
94 |
|
|
|
95 |
adata1 = normalize(adata1, |
|
|
96 |
size_factors=True, |
|
|
97 |
normalize_input=True, |
|
|
98 |
logtrans_input=True) |
|
|
99 |
|
|
|
100 |
adata2 = sc.AnnData(x2) |
|
|
101 |
#adata2.obs['Group'] = y |
|
|
102 |
adata2 = read_dataset(adata2, |
|
|
103 |
transpose=False, |
|
|
104 |
test_split=False, |
|
|
105 |
copy=True) |
|
|
106 |
|
|
|
107 |
adata2 = normalize(adata2, |
|
|
108 |
size_factors=True, |
|
|
109 |
normalize_input=True, |
|
|
110 |
logtrans_input=True) |
|
|
111 |
|
|
|
112 |
input_size1 = adata1.n_vars |
|
|
113 |
input_size2 = adata2.n_vars |
|
|
114 |
|
|
|
115 |
print(args) |
|
|
116 |
|
|
|
117 |
encodeLayer = list(map(int, args.encodeLayer)) |
|
|
118 |
decodeLayer1 = list(map(int, args.decodeLayer1)) |
|
|
119 |
decodeLayer2 = list(map(int, args.decodeLayer2)) |
|
|
120 |
|
|
|
121 |
model = scMultiClusterBatch(input_dim1=input_size1, input_dim2=input_size2, n_batch = args.nbatch, tau=args.tau, |
|
|
122 |
encodeLayer=encodeLayer, decodeLayer1=decodeLayer1, decodeLayer2=decodeLayer2, |
|
|
123 |
activation='elu', sigma1=args.sigma1, sigma2=args.sigma2, gamma=args.gamma, |
|
|
124 |
cutoff = args.cutoff, phi1=args.phi1, phi2=args.phi2, device=args.device).to(args.device) |
|
|
125 |
|
|
|
126 |
print(str(model)) |
|
|
127 |
|
|
|
128 |
if not os.path.exists(args.save_dir): |
|
|
129 |
os.makedirs(args.save_dir) |
|
|
130 |
|
|
|
131 |
|
|
|
132 |
t0 = time() |
|
|
133 |
if args.ae_weights is None: |
|
|
134 |
model.pretrain_autoencoder(X1=adata1.X, X_raw1=adata1.raw.X, sf1=adata1.obs.size_factors, |
|
|
135 |
X2=adata2.X, X_raw2=adata2.raw.X, sf2=adata2.obs.size_factors, B = B, batch_size=args.batch_size, |
|
|
136 |
epochs=args.pretrain_epochs, ae_weights=args.ae_weight_file) |
|
|
137 |
else: |
|
|
138 |
if os.path.isfile(args.ae_weights): |
|
|
139 |
print("==> loading checkpoint '{}'".format(args.ae_weights)) |
|
|
140 |
checkpoint = torch.load(args.ae_weights) |
|
|
141 |
model.load_state_dict(checkpoint['ae_state_dict']) |
|
|
142 |
else: |
|
|
143 |
print("==> no checkpoint found at '{}'".format(args.ae_weights)) |
|
|
144 |
raise ValueError |
|
|
145 |
|
|
|
146 |
print('Pretraining time: %d seconds.' % int(time() - t0)) |
|
|
147 |
|
|
|
148 |
#get k |
|
|
149 |
latent = model.encodeBatch(torch.tensor(adata1.X).to(args.device), torch.tensor(adata2.X).to(args.device), torch.tensor(B).to(args.device), batch_size=args.batch_size) |
|
|
150 |
latent = latent.cpu().numpy() |
|
|
151 |
if args.n_clusters == -1: |
|
|
152 |
n_clusters = GetCluster(latent, res=args.resolution, n=args.n_neighbors) |
|
|
153 |
else: |
|
|
154 |
print("n_cluster is defined as " + str(args.n_clusters)) |
|
|
155 |
n_clusters = args.n_clusters |
|
|
156 |
|
|
|
157 |
if not args.no_labels: |
|
|
158 |
y_pred,_ = model.fit(X1=adata1.X, X_raw1=adata1.raw.X, sf1=adata1.obs.size_factors, |
|
|
159 |
X2=adata2.X, X_raw2=adata2.raw.X, sf2=adata2.obs.size_factors, B=B, y=y, |
|
|
160 |
n_clusters=n_clusters, batch_size=args.batch_size, num_epochs=args.maxiter, |
|
|
161 |
update_interval=args.update_interval, tol=args.tol, lr=args.lr, save_dir=args.save_dir) |
|
|
162 |
else: |
|
|
163 |
y_pred,_ = model.fit(X1=adata1.X, X_raw1=adata1.raw.X, sf1=adata1.obs.size_factors, |
|
|
164 |
X2=adata2.X, X_raw2=adata2.raw.X, sf2=adata2.obs.size_factors, B=B, y=None, |
|
|
165 |
n_clusters=n_clusters, batch_size=args.batch_size, num_epochs=args.maxiter, |
|
|
166 |
update_interval=args.update_interval, tol=args.tol, lr=args.lr, save_dir=args.save_dir) |
|
|
167 |
print('Total time: %d seconds.' % int(time() - t0)) |
|
|
168 |
|
|
|
169 |
if args.prediction_file: |
|
|
170 |
np.savetxt(args.save_dir + "/" + str(args.run) + "_pred.csv", y_pred, delimiter=",") |
|
|
171 |
|
|
|
172 |
if args.embedding_file: |
|
|
173 |
final_latent = model.encodeBatch(torch.tensor(adata1.X).to(args.device), torch.tensor(adata2.X).to(args.device), torch.tensor(B).to(args.device), batch_size=args.batch_size) |
|
|
174 |
final_latent = final_latent.cpu().numpy() |
|
|
175 |
np.savetxt(args.save_dir + "/" + str(args.run) + "_embedding.csv", final_latent, delimiter=",") |
|
|
176 |
|
|
|
177 |
if not args.no_labels: |
|
|
178 |
y_pred_ = best_map(y, y_pred) |
|
|
179 |
ami = np.round(metrics.adjusted_mutual_info_score(y, y_pred), 5) |
|
|
180 |
nmi = np.round(metrics.normalized_mutual_info_score(y, y_pred), 5) |
|
|
181 |
ari = np.round(metrics.adjusted_rand_score(y, y_pred), 5) |
|
|
182 |
print('Final: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (ami, nmi, ari)) |
|
|
183 |
else: |
|
|
184 |
print("No labels for evaluation!") |