[ac720d]: / src / run_scMDC_batch.py

Download this file

185 lines (161 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from time import time
import math, os
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.preprocessing import OneHotEncoder
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import Parameter
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from scMDC_batch import scMultiClusterBatch
import numpy as np
import collections
import h5py
import scanpy as sc
from preprocess import read_dataset, normalize
from utils import *
if __name__ == "__main__":
# setting the hyper parameters
import argparse
parser = argparse.ArgumentParser(description='train',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--n_clusters', default=27, type=int)
parser.add_argument('--cutoff', default=0.5, type=float, help='Start to train combined layer after what ratio of epoch')
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--data_file', default='Normalized_filtered_BMNC_GSE128639_Seurat.h5')
parser.add_argument('--maxiter', default=5000, type=int)
parser.add_argument('--pretrain_epochs', default=400, type=int)
parser.add_argument('--gamma', default=.1, type=float,
help='coefficient of clustering loss')
parser.add_argument('--tau', default=1., type=float,
help='weight of clustering loss')
parser.add_argument('--phi1', default=0.001, type=float,
help='coefficient of KL loss in pretraining stage')
parser.add_argument('--phi2', default=0.001, type=float,
help='coefficient of KL loss in clustering stage')
parser.add_argument('--update_interval', default=1, type=int)
parser.add_argument('--tol', default=0.001, type=float)
parser.add_argument('--lr', default=1., type=float)
parser.add_argument('--ae_weights', default=None)
parser.add_argument('--save_dir', default='results/')
parser.add_argument('--ae_weight_file', default='AE_weights_1.pth.tar')
parser.add_argument('--resolution', default=0.2, type=float)
parser.add_argument('--n_neighbors', default=30, type=int)
parser.add_argument('--embedding_file', action='store_true', default=False)
parser.add_argument('--prediction_file', action='store_true', default=False)
parser.add_argument('-el','--encodeLayer', nargs='+', default=[256,64,32,16])
parser.add_argument('-dl1','--decodeLayer1', nargs='+', default=[16,64,256])
parser.add_argument('-dl2','--decodeLayer2', nargs='+', default=[16,20])
parser.add_argument('--sigma1', default=2.5, type=float)
parser.add_argument('--sigma2', default=1.5, type=float)
parser.add_argument('--f1', default=1000, type=float, help='Number of mRNA after feature selection')
parser.add_argument('--f2', default=2000, type=float, help='Number of ADT/ATAC after feature selection')
parser.add_argument('--filter1', action='store_true', default=False, help='Do mRNA selection')
parser.add_argument('--filter2', action='store_true', default=False, help='Do ADT/ATAC selection')
parser.add_argument('--nbatch', default=2, type=int)
parser.add_argument('--run', default=1, type=int)
parser.add_argument('--device', default='cuda')
parser.add_argument('--no_labels', action='store_true', default=False)
args = parser.parse_args()
print(args)
data_mat = h5py.File(args.data_file)
x1 = np.array(data_mat['X1'])
x2 = np.array(data_mat['X2'])
if not args.no_labels:
y = np.array(data_mat['Y'])
b = np.array(data_mat['Batch'])
enc = OneHotEncoder()
enc.fit(b.reshape(-1, 1))
B = enc.transform(b.reshape(-1, 1)).toarray()
data_mat.close()
#Gene filter
if args.filter1:
importantGenes = geneSelection(x1, n=args.f1, plot=False)
x1 = x1[:, importantGenes]
if args.filter2:
importantGenes = geneSelection(x2, n=args.f2, plot=False)
x2 = x2[:, importantGenes]
# preprocessing scRNA-seq read counts matrix
adata1 = sc.AnnData(x1)
#adata1.obs['Group'] = y
adata1 = read_dataset(adata1,
transpose=False,
test_split=False,
copy=True)
adata1 = normalize(adata1,
size_factors=True,
normalize_input=True,
logtrans_input=True)
adata2 = sc.AnnData(x2)
#adata2.obs['Group'] = y
adata2 = read_dataset(adata2,
transpose=False,
test_split=False,
copy=True)
adata2 = normalize(adata2,
size_factors=True,
normalize_input=True,
logtrans_input=True)
input_size1 = adata1.n_vars
input_size2 = adata2.n_vars
print(args)
encodeLayer = list(map(int, args.encodeLayer))
decodeLayer1 = list(map(int, args.decodeLayer1))
decodeLayer2 = list(map(int, args.decodeLayer2))
model = scMultiClusterBatch(input_dim1=input_size1, input_dim2=input_size2, n_batch = args.nbatch, tau=args.tau,
encodeLayer=encodeLayer, decodeLayer1=decodeLayer1, decodeLayer2=decodeLayer2,
activation='elu', sigma1=args.sigma1, sigma2=args.sigma2, gamma=args.gamma,
cutoff = args.cutoff, phi1=args.phi1, phi2=args.phi2, device=args.device).to(args.device)
print(str(model))
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
t0 = time()
if args.ae_weights is None:
model.pretrain_autoencoder(X1=adata1.X, X_raw1=adata1.raw.X, sf1=adata1.obs.size_factors,
X2=adata2.X, X_raw2=adata2.raw.X, sf2=adata2.obs.size_factors, B = B, batch_size=args.batch_size,
epochs=args.pretrain_epochs, ae_weights=args.ae_weight_file)
else:
if os.path.isfile(args.ae_weights):
print("==> loading checkpoint '{}'".format(args.ae_weights))
checkpoint = torch.load(args.ae_weights)
model.load_state_dict(checkpoint['ae_state_dict'])
else:
print("==> no checkpoint found at '{}'".format(args.ae_weights))
raise ValueError
print('Pretraining time: %d seconds.' % int(time() - t0))
#get k
latent = model.encodeBatch(torch.tensor(adata1.X).to(args.device), torch.tensor(adata2.X).to(args.device), torch.tensor(B).to(args.device), batch_size=args.batch_size)
latent = latent.cpu().numpy()
if args.n_clusters == -1:
n_clusters = GetCluster(latent, res=args.resolution, n=args.n_neighbors)
else:
print("n_cluster is defined as " + str(args.n_clusters))
n_clusters = args.n_clusters
if not args.no_labels:
y_pred,_ = model.fit(X1=adata1.X, X_raw1=adata1.raw.X, sf1=adata1.obs.size_factors,
X2=adata2.X, X_raw2=adata2.raw.X, sf2=adata2.obs.size_factors, B=B, y=y,
n_clusters=n_clusters, batch_size=args.batch_size, num_epochs=args.maxiter,
update_interval=args.update_interval, tol=args.tol, lr=args.lr, save_dir=args.save_dir)
else:
y_pred,_ = model.fit(X1=adata1.X, X_raw1=adata1.raw.X, sf1=adata1.obs.size_factors,
X2=adata2.X, X_raw2=adata2.raw.X, sf2=adata2.obs.size_factors, B=B, y=None,
n_clusters=n_clusters, batch_size=args.batch_size, num_epochs=args.maxiter,
update_interval=args.update_interval, tol=args.tol, lr=args.lr, save_dir=args.save_dir)
print('Total time: %d seconds.' % int(time() - t0))
if args.prediction_file:
np.savetxt(args.save_dir + "/" + str(args.run) + "_pred.csv", y_pred, delimiter=",")
if args.embedding_file:
final_latent = model.encodeBatch(torch.tensor(adata1.X).to(args.device), torch.tensor(adata2.X).to(args.device), torch.tensor(B).to(args.device), batch_size=args.batch_size)
final_latent = final_latent.cpu().numpy()
np.savetxt(args.save_dir + "/" + str(args.run) + "_embedding.csv", final_latent, delimiter=",")
if not args.no_labels:
y_pred_ = best_map(y, y_pred)
ami = np.round(metrics.adjusted_mutual_info_score(y, y_pred), 5)
nmi = np.round(metrics.normalized_mutual_info_score(y, y_pred), 5)
ari = np.round(metrics.adjusted_rand_score(y, y_pred), 5)
print('Final: AMI= %.4f, NMI= %.4f, ARI= %.4f' % (ami, nmi, ari))
else:
print("No labels for evaluation!")