|
a |
|
b/src/preprocess.py |
|
|
1 |
# Copyright 2017 Goekcen Eraslan |
|
|
2 |
# |
|
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
4 |
# you may not use this file except in compliance with the License. |
|
|
5 |
# You may obtain a copy of the License at |
|
|
6 |
# |
|
|
7 |
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
8 |
# |
|
|
9 |
# Unless required by applicable law or agreed to in writing, software |
|
|
10 |
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
12 |
# See the License for the specific language governing permissions and |
|
|
13 |
# limitations under the License. |
|
|
14 |
# ============================================================================== |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
from __future__ import absolute_import |
|
|
18 |
from __future__ import division |
|
|
19 |
from __future__ import print_function |
|
|
20 |
|
|
|
21 |
import pickle, os, numbers |
|
|
22 |
|
|
|
23 |
import numpy as np |
|
|
24 |
import scipy as sp |
|
|
25 |
import pandas as pd |
|
|
26 |
import scanpy as sc |
|
|
27 |
from sklearn.model_selection import train_test_split |
|
|
28 |
from sklearn.preprocessing import scale |
|
|
29 |
import scipy |
|
|
30 |
|
|
|
31 |
#TODO: Fix this |
|
|
32 |
class AnnSequence: |
|
|
33 |
def __init__(self, matrix, batch_size, sf=None): |
|
|
34 |
self.matrix = matrix |
|
|
35 |
if sf is None: |
|
|
36 |
self.size_factors = np.ones((self.matrix.shape[0], 1), |
|
|
37 |
dtype=np.float32) |
|
|
38 |
else: |
|
|
39 |
self.size_factors = sf |
|
|
40 |
self.batch_size = batch_size |
|
|
41 |
|
|
|
42 |
def __len__(self): |
|
|
43 |
return len(self.matrix) // self.batch_size |
|
|
44 |
|
|
|
45 |
def __getitem__(self, idx): |
|
|
46 |
batch = self.matrix[idx*self.batch_size:(idx+1)*self.batch_size] |
|
|
47 |
batch_sf = self.size_factors[idx*self.batch_size:(idx+1)*self.batch_size] |
|
|
48 |
|
|
|
49 |
# return an (X, Y) pair |
|
|
50 |
return {'count': batch, 'size_factors': batch_sf}, batch |
|
|
51 |
|
|
|
52 |
|
|
|
53 |
def read_dataset(adata, transpose=False, test_split=False, copy=False): |
|
|
54 |
|
|
|
55 |
if isinstance(adata, sc.AnnData): |
|
|
56 |
if copy: |
|
|
57 |
adata = adata.copy() |
|
|
58 |
elif isinstance(adata, str): |
|
|
59 |
adata = sc.read(adata) |
|
|
60 |
else: |
|
|
61 |
raise NotImplementedError |
|
|
62 |
|
|
|
63 |
norm_error = 'Make sure that the dataset (adata.X) contains unnormalized count data.' |
|
|
64 |
assert 'n_count' not in adata.obs, norm_error |
|
|
65 |
|
|
|
66 |
if adata.X.size < 50e6: # check if adata.X is integer only if array is small |
|
|
67 |
if sp.sparse.issparse(adata.X): |
|
|
68 |
assert (adata.X.astype(int) != adata.X).nnz == 0, norm_error |
|
|
69 |
else: |
|
|
70 |
assert np.all(adata.X.astype(int) == adata.X), norm_error |
|
|
71 |
|
|
|
72 |
if transpose: adata = adata.transpose() |
|
|
73 |
|
|
|
74 |
if test_split: |
|
|
75 |
train_idx, test_idx = train_test_split(np.arange(adata.n_obs), test_size=0.1, random_state=42) |
|
|
76 |
spl = pd.Series(['train'] * adata.n_obs) |
|
|
77 |
spl.iloc[test_idx] = 'test' |
|
|
78 |
adata.obs['DCA_split'] = spl.values |
|
|
79 |
else: |
|
|
80 |
adata.obs['DCA_split'] = 'train' |
|
|
81 |
|
|
|
82 |
adata.obs['DCA_split'] = adata.obs['DCA_split'].astype('category') |
|
|
83 |
print('### Autoencoder: Successfully preprocessed {} genes and {} cells.'.format(adata.n_vars, adata.n_obs)) |
|
|
84 |
|
|
|
85 |
return adata |
|
|
86 |
|
|
|
87 |
def clr_normalize_each_cell(adata): |
|
|
88 |
"""Normalize count vector for each cell, i.e. for each row of .X""" |
|
|
89 |
|
|
|
90 |
def seurat_clr(x): |
|
|
91 |
# TODO: support sparseness |
|
|
92 |
s = np.sum(np.log1p(x[x > 0])) |
|
|
93 |
exp = np.exp(s / len(x)) |
|
|
94 |
return np.log1p(x / exp) |
|
|
95 |
|
|
|
96 |
adata.raw = adata.copy() |
|
|
97 |
sc.pp.normalize_per_cell(adata) |
|
|
98 |
adata.obs['size_factors'] = adata.obs.n_counts / np.median(adata.obs.n_counts) |
|
|
99 |
|
|
|
100 |
# apply to dense or sparse matrix, along axis. returns dense matrix |
|
|
101 |
adata.X = np.apply_along_axis( |
|
|
102 |
seurat_clr, 1, (adata.raw.X.A if scipy.sparse.issparse(adata.raw.X) else adata.raw.X) |
|
|
103 |
) |
|
|
104 |
return adata |
|
|
105 |
|
|
|
106 |
def normalize(adata, filter_min_counts=True, size_factors=True, normalize_input=True, logtrans_input=True): |
|
|
107 |
|
|
|
108 |
if filter_min_counts: |
|
|
109 |
sc.pp.filter_genes(adata, min_counts=1) |
|
|
110 |
sc.pp.filter_cells(adata, min_counts=1) |
|
|
111 |
|
|
|
112 |
if size_factors or normalize_input or logtrans_input: |
|
|
113 |
adata.raw = adata.copy() |
|
|
114 |
else: |
|
|
115 |
adata.raw = adata |
|
|
116 |
|
|
|
117 |
if size_factors: |
|
|
118 |
sc.pp.normalize_per_cell(adata) |
|
|
119 |
adata.obs['size_factors'] = adata.obs.n_counts / np.median(adata.obs.n_counts) |
|
|
120 |
else: |
|
|
121 |
adata.obs['size_factors'] = 1.0 |
|
|
122 |
|
|
|
123 |
if logtrans_input: |
|
|
124 |
sc.pp.log1p(adata) |
|
|
125 |
|
|
|
126 |
if normalize_input: |
|
|
127 |
sc.pp.scale(adata) |
|
|
128 |
|
|
|
129 |
return adata |
|
|
130 |
|
|
|
131 |
def read_genelist(filename): |
|
|
132 |
genelist = list(set(open(filename, 'rt').read().strip().split('\n'))) |
|
|
133 |
assert len(genelist) > 0, 'No genes detected in genelist file' |
|
|
134 |
print('### Autoencoder: Subset of {} genes will be denoised.'.format(len(genelist))) |
|
|
135 |
|
|
|
136 |
return genelist |
|
|
137 |
|
|
|
138 |
def write_text_matrix(matrix, filename, rownames=None, colnames=None, transpose=False): |
|
|
139 |
if transpose: |
|
|
140 |
matrix = matrix.T |
|
|
141 |
rownames, colnames = colnames, rownames |
|
|
142 |
|
|
|
143 |
pd.DataFrame(matrix, index=rownames, columns=colnames).to_csv(filename, |
|
|
144 |
sep='\t', |
|
|
145 |
index=(rownames is not None), |
|
|
146 |
header=(colnames is not None), |
|
|
147 |
float_format='%.6f') |
|
|
148 |
def read_pickle(inputfile): |
|
|
149 |
return pickle.load(open(inputfile, "rb")) |