|
a |
|
b/src/Simulation.R |
|
|
1 |
library(SymSim) |
|
|
2 |
library(rhdf5) |
|
|
3 |
library(Seurat) |
|
|
4 |
|
|
|
5 |
phyla <- read.tree("tree.txt") |
|
|
6 |
phyla2 <- read.tree("tree.txt") |
|
|
7 |
data(gene_len_pool) |
|
|
8 |
|
|
|
9 |
#This is a simulation script with adding batch effect |
|
|
10 |
#First we need to modify the DivideBatches2 function in SymSim to make the same batch partition in mRNA and ADT data. |
|
|
11 |
DivideBatches2 <- function(observed_counts_res, batchIDs, batch_effect_size=1){ |
|
|
12 |
observed_counts <- observed_counts_res[["counts"]] |
|
|
13 |
meta_cell <- observed_counts_res[["cell_meta"]] |
|
|
14 |
ncells <- dim(observed_counts)[2] |
|
|
15 |
ngenes <- dim(observed_counts)[1] |
|
|
16 |
nbatch <- unique(batchIDs) |
|
|
17 |
meta_cell2 <- data.frame(batch = batchIDs, stringsAsFactors = F) |
|
|
18 |
meta_cell <- cbind(meta_cell, meta_cell2) |
|
|
19 |
mean_matrix <- matrix(0, ngenes, nbatch) |
|
|
20 |
gene_mean <- rnorm(ngenes, 0, 1) |
|
|
21 |
temp <- lapply(1:ngenes, function(igene) { |
|
|
22 |
return(runif(nbatch, min = gene_mean[igene] - batch_effect_size, |
|
|
23 |
max = gene_mean[igene] + batch_effect_size)) |
|
|
24 |
}) |
|
|
25 |
mean_matrix <- do.call(rbind, temp) |
|
|
26 |
batch_factor <- matrix(0, ngenes, ncells) |
|
|
27 |
for (igene in 1:ngenes) { |
|
|
28 |
for (icell in 1:ncells) { |
|
|
29 |
batch_factor[igene, icell] <- rnorm(n = 1, mean = mean_matrix[igene, |
|
|
30 |
batchIDs[icell]], sd = 0.01) |
|
|
31 |
} |
|
|
32 |
} |
|
|
33 |
observed_counts <- round(2^(log2(observed_counts) + batch_factor)) |
|
|
34 |
return(list(counts = observed_counts, cell_meta = meta_cell)) |
|
|
35 |
} |
|
|
36 |
|
|
|
37 |
for(k in 1:10){ |
|
|
38 |
##RNA |
|
|
39 |
ncells = 1000 |
|
|
40 |
nbatchs = 2 |
|
|
41 |
batchIDs <- sample(1:nbatchs, ncells, replace = TRUE) |
|
|
42 |
print(k) |
|
|
43 |
print("Simulate RNA") |
|
|
44 |
ngenes <- 2000 |
|
|
45 |
gene_len <- sample(gene_len_pool, ngenes, replace = FALSE) |
|
|
46 |
true_RNAcounts_res <- SimulateTrueCounts(ncells_total=ncells, |
|
|
47 |
min_popsize=50, |
|
|
48 |
i_minpop=1, |
|
|
49 |
ngenes=ngenes, |
|
|
50 |
nevf=10, |
|
|
51 |
evf_type="discrete", |
|
|
52 |
n_de_evf=6, |
|
|
53 |
vary="s", |
|
|
54 |
Sigma=0.6, |
|
|
55 |
phyla=phyla, |
|
|
56 |
randseed=k+1000) |
|
|
57 |
|
|
|
58 |
observed_RNAcounts <- True2ObservedCounts(true_counts=true_RNAcounts_res[[1]], |
|
|
59 |
meta_cell=true_RNAcounts_res[[3]], |
|
|
60 |
protocol="UMI", |
|
|
61 |
alpha_mean=0.00075, |
|
|
62 |
alpha_sd=0.0001, |
|
|
63 |
gene_len=gene_len, |
|
|
64 |
depth_mean=50000, |
|
|
65 |
depth_sd=3000, |
|
|
66 |
) |
|
|
67 |
|
|
|
68 |
batch_RNAcounts <- DivideBatches2(observed_RNAcounts, batchIDs, batch_effect_size = 1) |
|
|
69 |
|
|
|
70 |
## Add batch effects |
|
|
71 |
print((sum(batch_RNAcounts$counts==0)-sum(true_RNAcounts_res$counts==0))/sum(true_RNAcounts_res$counts>0)) |
|
|
72 |
print(sum(batch_RNAcounts$counts==0)/prod(dim(batch_RNAcounts$counts))) |
|
|
73 |
|
|
|
74 |
##ADT |
|
|
75 |
print("Simulate ADT") |
|
|
76 |
nadts <- 100 |
|
|
77 |
gene_len <- sample(gene_len_pool, nadts, replace = FALSE) |
|
|
78 |
#The true counts of the five populations can be simulated: |
|
|
79 |
true_ADTcounts_res <- SimulateTrueCounts(ncells_total=ncells, |
|
|
80 |
min_popsize=50, |
|
|
81 |
i_minpop=1, |
|
|
82 |
ngenes=nadts, |
|
|
83 |
nevf=10, |
|
|
84 |
evf_type="discrete", |
|
|
85 |
n_de_evf=6, |
|
|
86 |
vary="s", |
|
|
87 |
Sigma=0.3, |
|
|
88 |
phyla=phyla2, |
|
|
89 |
randseed=k+1000) |
|
|
90 |
|
|
|
91 |
observed_ADTcounts <- True2ObservedCounts(true_counts=true_ADTcounts_res[[1]], |
|
|
92 |
meta_cell=true_ADTcounts_res[[3]], |
|
|
93 |
protocol="UMI", |
|
|
94 |
alpha_mean=0.045, |
|
|
95 |
alpha_sd=0.01, |
|
|
96 |
gene_len=gene_len, |
|
|
97 |
depth_mean=50000, |
|
|
98 |
depth_sd=3000, |
|
|
99 |
) |
|
|
100 |
|
|
|
101 |
## Add batch effects |
|
|
102 |
batch_ADTcounts <- DivideBatches2(observed_ADTcounts, batchIDs, batch_effect_size = 1) |
|
|
103 |
|
|
|
104 |
print((sum(batch_ADTcounts$counts==0)-sum(true_ADTcounts_res$counts==0))/sum(true_ADTcounts_res$counts>0)) |
|
|
105 |
print(sum(batch_ADTcounts$counts==0)/prod(dim(batch_ADTcounts$counts))) |
|
|
106 |
|
|
|
107 |
y1 = batch_RNAcounts$cell_meta$pop |
|
|
108 |
y2 = batch_ADTcounts$cell_meta$pop |
|
|
109 |
batch1 = batch_ADTcounts$cell_meta$batch |
|
|
110 |
batch2 = batch_RNAcounts$cell_meta$batch |
|
|
111 |
print(sum(y1==y2)) |
|
|
112 |
print(sum(batch1 == batch2)) |
|
|
113 |
|
|
|
114 |
counts1 <- batch_RNAcounts[[1]] |
|
|
115 |
counts2 <- batch_ADTcounts[[1]] |
|
|
116 |
|
|
|
117 |
#filter |
|
|
118 |
rownames(counts2) <- paste("G",1:nrow(counts2),sep = "") |
|
|
119 |
colnames(counts2) <- paste("C",1:ncol(counts2),sep = "") |
|
|
120 |
|
|
|
121 |
pbmc <- CreateSeuratObject(counts = counts2, project = "P2", min.cells = 0, min.features = 0) |
|
|
122 |
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize") |
|
|
123 |
pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 30) |
|
|
124 |
counts2 <- counts2[pbmc@assays[["RNA"]]@var.features,] |
|
|
125 |
|
|
|
126 |
h5file = paste("./batch/Simulation.", k, ".h5", sep="") |
|
|
127 |
h5createFile(h5file) |
|
|
128 |
h5write(as.matrix(counts1), h5file,"X1") |
|
|
129 |
h5write(as.matrix(counts2), h5file,"X2") |
|
|
130 |
h5write(y1, h5file,"Y") |
|
|
131 |
h5write(batch1, h5file,"Batch") |
|
|
132 |
} |