[ac720d]: / src / LRP.py

Download this file

150 lines (121 with data), 6.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import re
import torch
from torch.functional import norm
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import Parameter
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import *
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils import clip_grad_norm_
import numpy as np
import math, os
class ClustDistLayer(nn.Module):
def __init__(self, centroids, n_clusters, clust_list, device):
super(ClustDistLayer, self).__init__()
self.centroids = Variable(centroids).to(device)
self.n_clusters = n_clusters
self.clust_list = clust_list
def forward(self, x, curr_clust_id):
output = []
for i in self.clust_list:
if i==curr_clust_id:
continue
weight = 2 * (self.centroids[self.clust_list.index(curr_clust_id)] - self.centroids[self.clust_list.index(i)])
bias = torch.norm(self.centroids[self.clust_list.index(curr_clust_id)], p=2) - torch.norm(self.centroids[self.clust_list.index(i)], p=2)
h = torch.matmul(x, weight.T) + bias
output.append(h.unsqueeze(1))
return torch.cat(output, dim=1)
class ClustMinPoolLayer(nn.Module):
def __init__(self, beta):
super(ClustMinPoolLayer, self).__init__()
self.beta = beta
self.eps = 1e-10
def forward(self, inputs):
return - torch.log(torch.sum(torch.exp(inputs * -self.beta), dim=1) + self.eps)
class LRP(nn.Module):
def __init__(self, model, X1, X2, Z, clust_ids, n_clusters, beta=1., device="cuda"):
super(LRP, self).__init__()
#model.freeze_model()
self.model = model
self.clust_ids = clust_ids
self.n_clusters = n_clusters
self.clust_list = np.unique(clust_ids).astype(int).tolist()
self.centroids_ =torch.tensor(self.set_centroids(Z), dtype=torch.float32)
self.X1_ = torch.tensor(X1, dtype=torch.float32)
self.X2_ = torch.tensor(X2, dtype=torch.float32)
self.Z_ = torch.tensor(Z, dtype=torch.float32)
self.distLayer = ClustDistLayer(self.centroids_, n_clusters, self.clust_list, device).to(device)
self.clustMinPool = ClustMinPoolLayer(beta).to(device)
self.device = device
def set_centroids(self, Z):
centroids = []
for i in self.clust_list:
clust_Z = Z[self.clust_ids==i]
curr_centroid = np.mean(clust_Z, axis=0)
centroids.append(curr_centroid)
return np.stack(centroids, axis=0)
def clust_minpoolAct(self, X1, X2, curr_clust_id):
z,_,_,_,_,_,_,_,_ = self.model.forwardAE(X1, X2)
return self.clustMinPool(self.distLayer(z, curr_clust_id))
def calc_carlini_wagner_one_vs_one(self, clust_c_id, clust_k_id, margin=1., lamda=1e2, max_iter=5000, lr=2e-3, use_abs=True):
X1_0 = Variable(self.X1_[self.clust_ids==clust_c_id], requires_grad=False).to(self.device)
curr_X1 = Variable(X1_0 + 1e-6, requires_grad=True).to(self.device)
X2_0 = Variable(self.X2_[self.clust_ids==clust_c_id], requires_grad=False).to(self.device)
curr_X2 = Variable(X2_0 + 1e-6, requires_grad=True).to(self.device)
optimizer = optim.SGD([curr_X1, curr_X2], lr=lr)
for iter in range(max_iter):
clust_c_minpoolAct_tensor = self.clust_minpoolAct(curr_X1, curr_X2, clust_c_id)
clust_k_minpoolAct_tensor = self.clust_minpoolAct(curr_X1, curr_X2, clust_k_id)
clust_loss_tensor = margin + clust_c_minpoolAct_tensor - clust_k_minpoolAct_tensor
clust_loss_tensor = torch.maximum(clust_loss_tensor, torch.zeros_like(clust_loss_tensor))
clust_loss = torch.sum(clust_loss_tensor)
norm_loss = torch.norm(curr_X1 - X1_0, p=1) + torch.norm(curr_X2 - X2_0, p=1)
loss = clust_loss * lamda + norm_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (iter+1) % 50 == 0:
print('Iteration {}, Total loss:{:.8f}, clust loss:{:.8f}, L1 penalty:{:.8f}'.format(iter, loss.item(), clust_loss.item(), norm_loss.item()))
if use_abs:
rel_score1 = torch.mean(torch.abs(curr_X1 - X1_0), dim=0)
rel_score2 = torch.mean(torch.abs(curr_X2 - X2_0), dim=0)
else:
rel_score1 = torch.mean(curr_X1 - X1_0, dim=0)
rel_score2 = torch.mean(curr_X2 - X2_0, dim=0)
return rel_score1.data.cpu().numpy(), rel_score2.data.cpu().numpy()
def calc_carlini_wagner_one_vs_rest(self, clust_c_id, margin=1., lamda=1e2, max_iter=5000, lr=2e-3, use_abs=True):
X1_0 = Variable(self.X1_[self.clust_ids==clust_c_id], requires_grad=False).to(self.device)
curr_X1 = Variable(X1_0 + 1e-6, requires_grad=True).to(self.device)
X2_0 = Variable(self.X2_[self.clust_ids==clust_c_id], requires_grad=False).to(self.device)
curr_X2 = Variable(X2_0 + 1e-6, requires_grad=True).to(self.device)
optimizer = optim.SGD([curr_X1, curr_X2], lr=lr)
for iter in range(max_iter):
clust_rest_minpoolAct_tensor_list = []
for clust_k_id in self.clust_list:
if clust_k_id == clust_c_id:
continue
clust_k_minpoolAct_tensor = self.clust_minpoolAct(curr_X1, curr_X2, clust_k_id)
clust_rest_minpoolAct_tensor_list.append(clust_k_minpoolAct_tensor)
clust_rest_minpoolAct_tensor = clust_rest_minpoolAct_tensor_list[0]
for clust_k_id in range(1, len(clust_rest_minpoolAct_tensor_list)):
clust_rest_minpoolAct_tensor = torch.maximum(clust_rest_minpoolAct_tensor, clust_rest_minpoolAct_tensor_list[clust_k_id])
clust_c_minpoolAct_tensor = self.clust_minpoolAct(curr_X1, curr_X2, clust_c_id)
clust_loss_tensor = margin + clust_c_minpoolAct_tensor - clust_rest_minpoolAct_tensor
clust_loss_tensor = torch.maximum(clust_loss_tensor, torch.zeros_like(clust_loss_tensor))
clust_loss = torch.sum(clust_loss_tensor)
norm_loss = torch.norm(curr_X1 - X1_0, p=1) + torch.norm(curr_X2 - X2_0, p=1)
loss = clust_loss * lamda + norm_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (iter+1) % 50 == 0:
print('Iteration {}, Total loss:{:.8f}, clust loss:{:.8f}, L1 penalty:{:.8f}'.format(iter, loss.item(), clust_loss.item(), norm_loss.item()))
if use_abs:
rel_score1 = torch.mean(torch.abs(curr_X1 - X1_0), dim=0)
rel_score2 = torch.mean(torch.abs(curr_X2 - X2_0), dim=0)
else:
rel_score1 = torch.mean(curr_X1 - X1_0, dim=0)
rel_score2 = torch.mean(curr_X2 - X2_0, dim=0)
return rel_score1.data.cpu().numpy(), rel_score2.data.cpu().numpy()