|
a |
|
b/README.md |
|
|
1 |
# scMDC |
|
|
2 |
Single Cell Multi-omics deep clustering (**scMDC v1.0.1**) |
|
|
3 |
|
|
|
4 |
We develop a novel multimodal deep learning method, scMDC, for single-cell multi-omics data clustering analysis. scMDC is an end-to-end deep model that explicitly characterizes different data sources and jointly learns latent features of deep embedding for clustering analysis. Extensive simulation and real-data experiments reveal that scMDC outperforms existing single-cell single-modal and multimodal clustering methods on different single-cell multimodal datasets. The linear scalability of running time makes scMDC a promising method for analyzing large multimodal datasets. |
|
|
5 |
|
|
|
6 |
## Table of contents |
|
|
7 |
- [Network diagram](#diagram) |
|
|
8 |
- [Dependencies](#Dependencies) |
|
|
9 |
- [Usage](#Usage) |
|
|
10 |
- [Output](#Output) |
|
|
11 |
- [Arguments](#Arguments) |
|
|
12 |
- [Citation](#Citation) |
|
|
13 |
- [Contact](#contact) |
|
|
14 |
|
|
|
15 |
## <a name="diagram"></a>Network diagram |
|
|
16 |
 |
|
|
17 |
|
|
|
18 |
## <a name="Dependencies"></a>Dependencies |
|
|
19 |
Python 3.8.1 |
|
|
20 |
|
|
|
21 |
Pytorch 1.6.0 |
|
|
22 |
|
|
|
23 |
Scanpy 1.6.0 |
|
|
24 |
|
|
|
25 |
SKlearn 0.22.1 |
|
|
26 |
|
|
|
27 |
Numpy 1.18.1 |
|
|
28 |
|
|
|
29 |
h5py 2.9.0 |
|
|
30 |
|
|
|
31 |
All experiments of scMDC in this study are conducted on Nvidia Tesla P100 (16G) GPU. |
|
|
32 |
We suggest to install the dependencies in a conda environment (conda create -n scMDC). |
|
|
33 |
It takes few minutes to install the dependencies. |
|
|
34 |
scMDC takes about 3 minutes to cluster a dataset with 5000 cells. |
|
|
35 |
|
|
|
36 |
## <a name="Usage"></a>Usage |
|
|
37 |
1) Prepare the input data in h5 format. (See readme in 'dataset' folder) |
|
|
38 |
2) Run scMDC according to the running script in "script" folder (Note the parameter settings if you work on mRNA+ATAC data and use run_scMDC_batch.py for multi-batch data clustering) |
|
|
39 |
3) Run DE analysis by run_LRP.py based on the well-trained scMDC model (refer the LRP running script in "script" folder) |
|
|
40 |
|
|
|
41 |
## <a name="Output"></a>Output |
|
|
42 |
1) scMDC outputs a latent representation of data which can be used for further downstream analyses and visualized by t-SNE or Umap; |
|
|
43 |
2) Multi-batch scMDC outputs a latent representation of integrated datasets on which the batch effects are corrected. |
|
|
44 |
3) LRP outputs a gene rank which indicates the importances of genes for a given cluster and can be used for pathway analysis. |
|
|
45 |
|
|
|
46 |
## <a name="Arguments"></a>Arguments |
|
|
47 |
--n_clusters: number of clusters (K); scMDC will estimate K if this arguments is set to -1. |
|
|
48 |
--cutoff: A ratio of epoch before which the model only train the low-level autoencoders. |
|
|
49 |
--batch_size: batch size. |
|
|
50 |
--data_file: path to the data input. |
|
|
51 |
Data format: H5. |
|
|
52 |
Structure: X1(RNA), X2(ADT or ATAC), Y(label, if exit), Batch (Batch indicator for multi-batch data clustering). |
|
|
53 |
--maxiter: maximum epochs of training. Default: 10000. |
|
|
54 |
--pretrain_epochs: number of epochs for pre-training. Default: 400. |
|
|
55 |
--gamma: coefficient of clustering loss. Default: 0.1. |
|
|
56 |
--phi1 and phi2: coefficient of KL loss in pretraining and clustering stage. Default: 0.001 for CITE-Seq; 0.005 for SMAGE-Seq*. |
|
|
57 |
--update_interval: the interval to check the performance. Default: 1. |
|
|
58 |
--tol: the criterion to stop the model, which is a percentage of changed labels. Default: 0.001. |
|
|
59 |
--ae_weights: path of the weight file. |
|
|
60 |
--save_dir: the directory to store the outputs. |
|
|
61 |
--ae_weight_file: the directory to store the weights. |
|
|
62 |
--resolution: the resolution parameter to estimate k. Default: 0.2. |
|
|
63 |
--n_neighbors: the n_neighbors parameter to estimate K. Default: 30. |
|
|
64 |
--embedding_file: if save embedding file. Default: No |
|
|
65 |
--prediction_file: if save prediction file. Default: No |
|
|
66 |
--encodeLayer: layers of the low-level encoder for RNA: Default: [256,64,32,16] for CITE-Seq; [256,128,64] for SMAGE-seq. |
|
|
67 |
--decodeLayer1: layers of the low-level encoder for ADT: Default: [16,64,256] for CITE-Seq. [64,128,256] for SMAGE-seq. |
|
|
68 |
--decodeLayer2: layers of the high-level encoder. Default:[16,20] for CITE-Seq. [64,128,256] for SMAGE-seq. |
|
|
69 |
--sigma1: noise on RNA data. Default: 2.5. |
|
|
70 |
--sigma2: noise on ADT data. Default: 1.5 for CITE-Seq; 2.5 for SMAGE-Seq |
|
|
71 |
--filter1: if do feature selection on Genes. Default: No. |
|
|
72 |
--filter2: if do feature selection on ATAC. Default: No. |
|
|
73 |
--f1: Number of high variable genes (in X1) used for clustering if doing the featue selection. Default: 2000 |
|
|
74 |
--f2: Number of high variable genes from ATAC (in X2) used for clustering if doing the featue selection. Default: 2000 |
|
|
75 |
*We denote 10X Single-Cell Multiome ATAC + Gene Expression technology as SMAGE-seq for convenience. |
|
|
76 |
|
|
|
77 |
|
|
|
78 |
## <a name="Citation"></a>Citation |
|
|
79 |
Lin, X., Tian, T., Wei, Z., & Hakonarson, H. (2022). Clustering of single-cell multi-omics data with a multimodal deep learning method. Nature Communications, 13(1), 1-18. |
|
|
80 |
|
|
|
81 |
## <a name="contact"></a>Contact |
|
|
82 |
Xiang Lin <xl456@njit.edu> |