[4a0329]: / man / identifyClusters.Rd

Download this file

34 lines (25 with data), 1.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/scAI_model.R
\name{identifyClusters}
\alias{identifyClusters}
\title{Identify cell clusters}
\usage{
identifyClusters(object, resolution = 1,
partition.type = "RBConfigurationVertexPartition", seed.use = 42L,
n.iter = 10L, initial.membership = NULL, weights = NULL,
node.sizes = NULL, K = NULL)
}
\arguments{
\item{object}{scAI object}
\item{resolution}{A parameter controlling the coarseness of the clusters}
\item{partition.type}{Type of partition to use. Defaults to RBConfigurationVertexPartition. Options include: ModularityVertexPartition, RBERVertexPartition, CPMVertexPartition, MutableVertexPartition, SignificanceVertexPartition, SurpriseVertexPartition (see the Leiden python module documentation for more details)}
\item{seed.use}{set seed}
\item{n.iter}{number of iteration}
\item{initial.membership}{arameters to pass to the Python leidenalg function defaults initial_membership=None}
\item{weights}{defaults weights=None}
\item{node.sizes}{Parameters to pass to the Python leidenalg function}
\item{K}{Number of clusters if performing hierarchical clustering of the consensus matrix}
}
\description{
Identify cell clusters
}