|
a |
|
b/man/runLeiden.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/scAI_model.R |
|
|
3 |
\name{runLeiden} |
|
|
4 |
\alias{runLeiden} |
|
|
5 |
\title{Run Leiden clustering algorithm |
|
|
6 |
This code is modified from Tom Kelly (https://github.com/TomKellyGenetics/leiden), where we added more parameters (seed.use and n.iter) to run the Python version. In addition, we also take care of the singleton issue after running leiden algorithm.} |
|
|
7 |
\usage{ |
|
|
8 |
runLeiden(SNN = matrix(), resolution = 1, |
|
|
9 |
partition_type = c("RBConfigurationVertexPartition", |
|
|
10 |
"ModularityVertexPartition", "RBERVertexPartition", "CPMVertexPartition", |
|
|
11 |
"MutableVertexPartition", "SignificanceVertexPartition", |
|
|
12 |
"SurpriseVertexPartition"), seed.use = 42L, n.iter = 10L, |
|
|
13 |
initial.membership = NULL, weights = NULL, node.sizes = NULL) |
|
|
14 |
} |
|
|
15 |
\arguments{ |
|
|
16 |
\item{SNN}{An adjacency matrix compatible with \code{\link[igraph]{igraph}} object.} |
|
|
17 |
|
|
|
18 |
\item{resolution}{A parameter controlling the coarseness of the clusters} |
|
|
19 |
|
|
|
20 |
\item{partition_type}{Type of partition to use. Defaults to RBConfigurationVertexPartition. Options include: ModularityVertexPartition, RBERVertexPartition, CPMVertexPartition, MutableVertexPartition, SignificanceVertexPartition, SurpriseVertexPartition (see the Leiden python module documentation for more details)} |
|
|
21 |
|
|
|
22 |
\item{seed.use}{set seed} |
|
|
23 |
|
|
|
24 |
\item{n.iter}{number of iteration} |
|
|
25 |
|
|
|
26 |
\item{initial.membership}{arameters to pass to the Python leidenalg function defaults initial_membership=None} |
|
|
27 |
|
|
|
28 |
\item{weights}{defaults weights=None} |
|
|
29 |
|
|
|
30 |
\item{node.sizes}{Parameters to pass to the Python leidenalg function} |
|
|
31 |
} |
|
|
32 |
\value{ |
|
|
33 |
A parition of clusters as a vector of integers |
|
|
34 |
} |
|
|
35 |
\description{ |
|
|
36 |
Implements the Leiden clustering algorithm in R using reticulate to run the Python version. Requires the python "leidenalg" and "igraph" modules to be installed. Returns a vector of partition indices. |
|
|
37 |
} |
|
|
38 |
\keyword{graph} |
|
|
39 |
\keyword{igraph} |
|
|
40 |
\keyword{mvtnorm} |
|
|
41 |
\keyword{network} |
|
|
42 |
\keyword{simulation} |