r"""
Util functions (:mod: `qiita_db.meta_util`)
===========================================
..currentmodule:: qiita_db.meta_util
This module provides utility functions that use the ORM objects. ORM objects
CANNOT import from this file.
Methods
-------
..autosummary::
:toctree: generated/
get_lat_longs
"""
# -----------------------------------------------------------------------------
# Copyright (c) 2014--, The Qiita Development Team.
#
# Distributed under the terms of the BSD 3-clause License.
#
# The full license is in the file LICENSE, distributed with this software.
# -----------------------------------------------------------------------------
from os import stat
from shutil import move
from os.path import join, relpath, basename
from time import strftime, localtime
import matplotlib.pyplot as plt
import matplotlib as mpl
from base64 import b64encode
from urllib.parse import quote
from io import BytesIO
from datetime import datetime
from collections import defaultdict, Counter
from tarfile import open as topen, TarInfo
from hashlib import md5
from re import sub
from json import loads, dump, dumps
from qiita_db.util import create_nested_path, retrieve_resource_data
from qiita_db.util import resource_allocation_plot
from qiita_core.qiita_settings import qiita_config, r_client
from qiita_core.configuration_manager import ConfigurationManager
import qiita_db as qdb
# global constant list used in resource_allocation_page
COLUMNS = [
"sName", "sVersion", "cID", "cName", "processing_job_id",
"parameters", "samples", "columns", "input_size", "extra_info",
"MaxRSSRaw", "ElapsedRaw", "Start", "node_name", "node_model"]
RAW_DATA_ARTIFACT_TYPE = {
'SFF', 'FASTQ', 'FASTA', 'FASTA_Sanger', 'per_sample_FASTQ'}
def _get_data_fpids(constructor, object_id):
"""Small function for getting filepath IDS associated with data object
Parameters
----------
constructor : a subclass of BaseData
E.g., RawData, PreprocessedData, or ProcessedData
object_id : int
The ID of the data object
Returns
-------
set of int
"""
with qdb.sql_connection.TRN:
obj = constructor(object_id)
return {fpid for fpid, _, _ in obj.get_filepaths()}
def validate_filepath_access_by_user(user, filepath_id):
"""Validates if the user has access to the filepath_id
Parameters
----------
user : User object
The user we are interested in
filepath_id : int
The filepath id
Returns
-------
bool
If the user has access or not to the filepath_id
Notes
-----
Admins have access to all files so True is always returned
"""
TRN = qdb.sql_connection.TRN
with TRN:
if user.level == "admin":
# admins have access all files
return True
sql = """SELECT
(SELECT array_agg(artifact_id)
FROM qiita.artifact_filepath
WHERE filepath_id = {0}) AS artifact,
(SELECT array_agg(study_id)
FROM qiita.sample_template_filepath
WHERE filepath_id = {0}) AS sample_info,
(SELECT array_agg(prep_template_id)
FROM qiita.prep_template_filepath
WHERE filepath_id = {0}) AS prep_info,
(SELECT array_agg(analysis_id)
FROM qiita.analysis_filepath
WHERE filepath_id = {0}) AS analysis""".format(filepath_id)
TRN.add(sql)
arid, sid, pid, anid = TRN.execute_fetchflatten()
# artifacts
if arid:
# [0] cause we should only have 1
artifact = qdb.artifact.Artifact(arid[0])
if artifact.visibility == 'public':
# TODO: https://github.com/biocore/qiita/issues/1724
if artifact.artifact_type in RAW_DATA_ARTIFACT_TYPE:
study = artifact.study
has_access = study.has_access(user, no_public=True)
if (not study.public_raw_download and not has_access):
return False
return True
else:
study = artifact.study
if study:
# let's take the visibility via the Study
return artifact.study.has_access(user)
else:
analysis = artifact.analysis
return analysis in (
user.private_analyses | user.shared_analyses)
# sample info files
elif sid:
# the visibility of the sample info file is given by the
# study visibility
# [0] cause we should only have 1
return qdb.study.Study(sid[0]).has_access(user)
# prep info files
elif pid:
# the prep access is given by it's artifacts, if the user has
# access to any artifact, it should have access to the prep
# [0] cause we should only have 1
pt = qdb.metadata_template.prep_template.PrepTemplate(
pid[0])
a = pt.artifact
# however, the prep info file could not have any artifacts attached
# , in that case we will use the study access level
if a is None:
return qdb.study.Study(pt.study_id).has_access(user)
else:
if (a.visibility == 'public' or a.study.has_access(user)):
return True
else:
for c in a.descendants.nodes():
if ((c.visibility == 'public' or
c.study.has_access(user))):
return True
return False
# analyses
elif anid:
# [0] cause we should only have 1
aid = anid[0]
analysis = qdb.analysis.Analysis(aid)
return analysis.is_public | (analysis in (
user.private_analyses | user.shared_analyses))
return False
def update_redis_stats():
"""Generate the system stats and save them in redis
Returns
-------
list of str
artifact filepaths that are not present in the file system
"""
STUDY = qdb.study.Study
number_studies = {'public': 0, 'private': 0, 'sandbox': 0}
number_of_samples = {'public': 0, 'private': 0, 'sandbox': 0}
num_studies_ebi = 0
num_samples_ebi = 0
number_samples_ebi_prep = 0
stats = []
missing_files = []
per_data_type_stats = Counter()
for study in STUDY.iter():
st = study.sample_template
if st is None:
continue
# counting samples submitted to EBI-ENA
len_samples_ebi = sum([esa is not None
for esa in st.ebi_sample_accessions.values()])
if len_samples_ebi != 0:
num_studies_ebi += 1
num_samples_ebi += len_samples_ebi
samples_status = defaultdict(set)
for pt in study.prep_templates():
pt_samples = list(pt.keys())
pt_status = pt.status
if pt_status == 'public':
per_data_type_stats[pt.data_type()] += len(pt_samples)
samples_status[pt_status].update(pt_samples)
# counting experiments (samples in preps) submitted to EBI-ENA
number_samples_ebi_prep += sum([
esa is not None
for esa in pt.ebi_experiment_accessions.values()])
# counting studies
if 'public' in samples_status:
number_studies['public'] += 1
elif 'private' in samples_status:
number_studies['private'] += 1
else:
# note that this is a catch all for other status; at time of
# writing there is status: awaiting_approval
number_studies['sandbox'] += 1
# counting samples; note that some of these lines could be merged with
# the block above but I decided to split it in 2 for clarity
if 'public' in samples_status:
number_of_samples['public'] += len(samples_status['public'])
if 'private' in samples_status:
number_of_samples['private'] += len(samples_status['private'])
if 'sandbox' in samples_status:
number_of_samples['sandbox'] += len(samples_status['sandbox'])
# processing filepaths
for artifact in study.artifacts():
for adata in artifact.filepaths:
try:
s = stat(adata['fp'])
except OSError:
missing_files.append(adata['fp'])
else:
stats.append(
(adata['fp_type'], s.st_size, strftime('%Y-%m',
localtime(s.st_mtime))))
num_users = qdb.util.get_count('qiita.qiita_user')
num_processing_jobs = qdb.util.get_count('qiita.processing_job')
lat_longs = dumps(get_lat_longs())
summary = {}
all_dates = []
# these are some filetypes that are too small to plot alone so we'll merge
# in other
group_other = {'html_summary', 'tgz', 'directory', 'raw_fasta', 'log',
'raw_sff', 'raw_qual', 'qza', 'html_summary_dir',
'qza', 'plain_text', 'raw_barcodes'}
for ft, size, ym in stats:
if ft in group_other:
ft = 'other'
if ft not in summary:
summary[ft] = {}
if ym not in summary[ft]:
summary[ft][ym] = 0
all_dates.append(ym)
summary[ft][ym] += size
all_dates = sorted(set(all_dates))
# sorting summaries
ordered_summary = {}
for dt in summary:
new_list = []
current_value = 0
for ad in all_dates:
if ad in summary[dt]:
current_value += summary[dt][ad]
new_list.append(current_value)
ordered_summary[dt] = new_list
plot_order = sorted([(k, ordered_summary[k][-1]) for k in ordered_summary],
key=lambda x: x[1])
# helper function to generate y axis, modified from:
# http://stackoverflow.com/a/1094933
def sizeof_fmt(value, position):
number = None
for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:
if abs(value) < 1024.0:
number = "%3.1f%s" % (value, unit)
break
value /= 1024.0
if number is None:
number = "%.1f%s" % (value, 'Yi')
return number
all_dates_axis = range(len(all_dates))
plt.locator_params(axis='y', nbins=10)
plt.figure(figsize=(20, 10))
for k, v in plot_order:
plt.plot(all_dates_axis, ordered_summary[k], linewidth=2, label=k)
plt.xticks(all_dates_axis, all_dates)
plt.legend()
plt.grid()
ax = plt.gca()
ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(sizeof_fmt))
plt.xticks(rotation=90)
plt.xlabel('Date')
plt.ylabel('Storage space per data type')
plot = BytesIO()
plt.savefig(plot, format='png')
plot.seek(0)
img = 'data:image/png;base64,' + quote(b64encode(plot.getbuffer()))
time = datetime.now().strftime('%m-%d-%y %H:%M:%S')
portal = qiita_config.portal
# making sure per_data_type_stats has some data so hmset doesn't fail
if per_data_type_stats == {}:
per_data_type_stats['No data'] = 0
vals = [
('number_studies', number_studies, r_client.hmset),
('number_of_samples', number_of_samples, r_client.hmset),
('per_data_type_stats', dict(per_data_type_stats), r_client.hmset),
('num_users', num_users, r_client.set),
('lat_longs', (lat_longs), r_client.set),
('num_studies_ebi', num_studies_ebi, r_client.set),
('num_samples_ebi', num_samples_ebi, r_client.set),
('number_samples_ebi_prep', number_samples_ebi_prep, r_client.set),
('img', img, r_client.set),
('time', time, r_client.set),
('num_processing_jobs', num_processing_jobs, r_client.set)]
for k, v, f in vals:
redis_key = '%s:stats:%s' % (portal, k)
# important to "flush" variables to avoid errors
r_client.delete(redis_key)
f(redis_key, v)
# preparing vals to insert into DB
vals = dumps(dict([x[:-1] for x in vals]))
sql = """INSERT INTO qiita.stats_daily (stats, stats_timestamp)
VALUES (%s, NOW())"""
qdb.sql_connection.perform_as_transaction(sql, [vals])
return missing_files
def get_lat_longs():
"""Retrieve the latitude and longitude of all the public samples in the DB
Returns
-------
list of [float, float]
The latitude and longitude for each sample in the database
"""
with qdb.sql_connection.TRN:
# getting all the public studies
studies = qdb.study.Study.get_by_status('public')
results = []
if studies:
# we are going to create multiple union selects to retrieve the
# latigute and longitude of all available studies. Note that
# UNION in PostgreSQL automatically removes duplicates
sql_query = """
SELECT {0}, CAST(sample_values->>'latitude' AS FLOAT),
CAST(sample_values->>'longitude' AS FLOAT)
FROM qiita.sample_{0}
WHERE sample_values->>'latitude' != 'NaN' AND
sample_values->>'longitude' != 'NaN' AND
isnumeric(sample_values->>'latitude') AND
isnumeric(sample_values->>'longitude')"""
sql = [sql_query.format(s.id) for s in studies]
sql = ' UNION '.join(sql)
qdb.sql_connection.TRN.add(sql)
# note that we are returning set to remove duplicates
results = qdb.sql_connection.TRN.execute_fetchindex()
return results
def generate_biom_and_metadata_release(study_status='public'):
"""Generate a list of biom/meatadata filepaths and a tgz of those files
Parameters
----------
study_status : str, optional
The study status to search for. Note that this should always be set
to 'public' but having this exposed helps with testing. The other
options are 'private' and 'sandbox'
"""
studies = qdb.study.Study.get_by_status(study_status)
qiita_config = ConfigurationManager()
working_dir = qiita_config.working_dir
portal = qiita_config.portal
bdir = qdb.util.get_db_files_base_dir()
time = datetime.now().strftime('%m-%d-%y %H:%M:%S')
data = []
for s in studies:
# [0] latest is first, [1] only getting the filepath
sample_fp = relpath(s.sample_template.get_filepaths()[0][1], bdir)
for a in s.artifacts(artifact_type='BIOM'):
if a.processing_parameters is None or a.visibility != study_status:
continue
merging_schemes, parent_softwares = a.merging_scheme
software = a.processing_parameters.command.software
software = '%s v%s' % (software.name, software.version)
for x in a.filepaths:
if x['fp_type'] != 'biom' or 'only-16s' in x['fp']:
continue
fp = relpath(x['fp'], bdir)
for pt in a.prep_templates:
categories = pt.categories
platform = ''
target_gene = ''
if 'platform' in categories:
platform = ', '.join(
set(pt.get_category('platform').values()))
if 'target_gene' in categories:
target_gene = ', '.join(
set(pt.get_category('target_gene').values()))
for _, prep_fp in pt.get_filepaths():
if 'qiime' not in prep_fp:
break
prep_fp = relpath(prep_fp, bdir)
# format: (biom_fp, sample_fp, prep_fp, qiita_artifact_id,
# platform, target gene, merging schemes,
# artifact software/version,
# parent sofware/version)
data.append((fp, sample_fp, prep_fp, a.id, platform,
target_gene, merging_schemes, software,
parent_softwares))
# writing text and tgz file
ts = datetime.now().strftime('%m%d%y-%H%M%S')
tgz_dir = join(working_dir, 'releases')
create_nested_path(tgz_dir)
tgz_name = join(tgz_dir, '%s-%s-building.tgz' % (portal, study_status))
tgz_name_final = join(tgz_dir, '%s-%s.tgz' % (portal, study_status))
txt_lines = [
"biom fp\tsample fp\tprep fp\tqiita artifact id\tplatform\t"
"target gene\tmerging scheme\tartifact software\tparent software"]
with topen(tgz_name, "w|gz") as tgz:
for biom_fp, sample_fp, prep_fp, aid, pform, tg, ms, asv, psv in data:
txt_lines.append("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % (
biom_fp, sample_fp, prep_fp, aid, pform, tg, ms, asv, psv))
tgz.add(join(bdir, biom_fp), arcname=biom_fp, recursive=False)
tgz.add(join(bdir, sample_fp), arcname=sample_fp, recursive=False)
tgz.add(join(bdir, prep_fp), arcname=prep_fp, recursive=False)
info = TarInfo(name='%s-%s-%s.txt' % (portal, study_status, ts))
txt_hd = BytesIO()
txt_hd.write(bytes('\n'.join(txt_lines), 'ascii'))
txt_hd.seek(0)
info.size = len(txt_hd.read())
txt_hd.seek(0)
tgz.addfile(tarinfo=info, fileobj=txt_hd)
with open(tgz_name, "rb") as f:
md5sum = md5()
for c in iter(lambda: f.read(4096), b""):
md5sum.update(c)
move(tgz_name, tgz_name_final)
vals = [
('filepath', tgz_name_final[len(working_dir):], r_client.set),
('md5sum', md5sum.hexdigest(), r_client.set),
('time', time, r_client.set)]
for k, v, f in vals:
redis_key = '%s:release:%s:%s' % (portal, study_status, k)
# important to "flush" variables to avoid errors
r_client.delete(redis_key)
f(redis_key, v)
def generate_plugin_releases():
"""Generate releases for plugins
"""
ARCHIVE = qdb.archive.Archive
qiita_config = ConfigurationManager()
working_dir = qiita_config.working_dir
commands = [c for s in qdb.software.Software.iter(active=True)
for c in s.commands if c.post_processing_cmd is not None]
tnow = datetime.now()
ts = tnow.strftime('%m%d%y-%H%M%S')
tgz_dir = join(working_dir, 'releases', 'archive')
create_nested_path(tgz_dir)
tgz_dir_release = join(tgz_dir, ts)
create_nested_path(tgz_dir_release)
for cmd in commands:
cmd_name = cmd.name
mschemes = [v for _, v in ARCHIVE.merging_schemes().items()
if cmd_name in v]
for ms in mschemes:
ms_name = sub('[^0-9a-zA-Z]+', '', ms)
ms_fp = join(tgz_dir_release, ms_name)
create_nested_path(ms_fp)
pfp = join(ms_fp, 'archive.json')
archives = {k: loads(v)
for k, v in ARCHIVE.retrieve_feature_values(
archive_merging_scheme=ms).items()
if v != ''}
with open(pfp, 'w') as f:
dump(archives, f)
# now let's run the post_processing_cmd
ppc = cmd.post_processing_cmd
# concatenate any other parameters into a string
params = ' '.join(["%s=%s" % (k, v) for k, v in
ppc['script_params'].items()])
# append archives file and output dir parameters
params = ("%s --fp_archive=%s --output_dir=%s" % (
params, pfp, ms_fp))
ppc_cmd = "%s %s %s" % (
ppc['script_env'], ppc['script_path'], params)
p_out, p_err, rv = qdb.processing_job._system_call(ppc_cmd)
p_out = p_out.rstrip()
if rv != 0:
raise ValueError('Error %d: %s' % (rv, p_out))
p_out = loads(p_out)
# tgz-ing all files
tgz_name = join(tgz_dir, 'archive-%s-building.tgz' % ts)
tgz_name_final = join(tgz_dir, 'archive.tgz')
with topen(tgz_name, "w|gz") as tgz:
tgz.add(tgz_dir_release, arcname=basename(tgz_dir_release))
# getting the release md5
with open(tgz_name, "rb") as f:
md5sum = md5()
for c in iter(lambda: f.read(4096), b""):
md5sum.update(c)
move(tgz_name, tgz_name_final)
vals = [
('filepath', tgz_name_final[len(working_dir):], r_client.set),
('md5sum', md5sum.hexdigest(), r_client.set),
('time', tnow.strftime('%m-%d-%y %H:%M:%S'), r_client.set)]
for k, v, f in vals:
redis_key = 'release-archive:%s' % k
# important to "flush" variables to avoid errors
r_client.delete(redis_key)
f(redis_key, v)
def get_software_commands(active):
software_list = [s for s in qdb.software.Software.iter(active=active)]
software_commands = defaultdict(lambda: defaultdict(list))
for software in software_list:
sname = software.name
sversion = software.version
commands = software.commands
for command in commands:
software_commands[sname][sversion].append(command.name)
software_commands[sname] = dict(software_commands[sname])
return dict(software_commands)
def update_resource_allocation_redis(active=True):
"""Updates redis with plots and information about current software.
Parameters
----------
active: boolean, optional
Defaults to True. Should only be False when testing.
"""
time = datetime.now().strftime('%m-%d-%y')
scommands = get_software_commands(active)
redis_key = 'resources:commands'
r_client.set(redis_key, str(scommands))
for sname, versions in scommands.items():
for version, commands in versions.items():
for cname in commands:
col_name = "samples * columns"
df = retrieve_resource_data(cname, sname, version, COLUMNS)
if len(df) == 0:
continue
fig, axs = resource_allocation_plot(df, col_name)
titles = [0, 0]
images = [0, 0]
# Splitting 1 image plot into 2 separate for better layout.
for i, ax in enumerate(axs):
titles[i] = ax.get_title()
ax.set_title("")
# new_fig, new_ax – copy with either only memory plot or
# only time
new_fig = plt.figure()
new_ax = new_fig.add_subplot(111)
line = ax.lines[0]
new_ax.plot(line.get_xdata(), line.get_ydata(),
linewidth=1, color='orange')
handles, labels = ax.get_legend_handles_labels()
for handle, label, scatter_data in zip(handles,
labels,
ax.collections):
color = handle.get_facecolor()
new_ax.scatter(scatter_data.get_offsets()[:, 0],
scatter_data.get_offsets()[:, 1],
s=scatter_data.get_sizes(), label=label,
color=color)
new_ax.set_xscale('log')
new_ax.set_yscale('log')
new_ax.set_xlabel(ax.get_xlabel())
new_ax.set_ylabel(ax.get_ylabel())
new_ax.legend(loc='upper left')
new_fig.tight_layout()
plot = BytesIO()
new_fig.savefig(plot, format='png')
plot.seek(0)
img = 'data:image/png;base64,' + quote(
b64encode(plot.getvalue()).decode('ascii'))
images[i] = img
plt.close(new_fig)
plt.close(fig)
# SID, CID, col_name
values = [
("img_mem", images[0], r_client.set),
("img_time", images[1], r_client.set),
('time', time, r_client.set),
("title_mem", titles[0], r_client.set),
("title_time", titles[1], r_client.set)
]
for k, v, f in values:
redis_key = 'resources$#%s$#%s$#%s$#%s:%s' % (
cname, sname, version, col_name, k)
r_client.delete(redis_key)
f(redis_key, v)