|
a |
|
b/notebooks/resource-allocation/generate-allocation-summary.py |
|
|
1 |
from subprocess import check_output |
|
|
2 |
import pandas as pd |
|
|
3 |
from datetime import datetime, timedelta |
|
|
4 |
from io import StringIO |
|
|
5 |
from json import loads |
|
|
6 |
from os.path import join |
|
|
7 |
|
|
|
8 |
from qiita_db.util import MaxRSS_helper |
|
|
9 |
from qiita_db.exceptions import QiitaDBUnknownIDError |
|
|
10 |
from qiita_db.processing_job import ProcessingJob |
|
|
11 |
from qiita_db.software import Software |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
all_commands = [c for s in Software.iter(False) for c in s.commands] |
|
|
15 |
|
|
|
16 |
# retrieving only the numerice external_id means that we are only focusing |
|
|
17 |
# on barnacle2/slurm jobs |
|
|
18 |
main_jobs = [j for c in all_commands for j in c.processing_jobs |
|
|
19 |
if j.status == 'success' and j.external_id.isnumeric()] |
|
|
20 |
|
|
|
21 |
sacct = ['sacct', '-p', '--format=JobID,ElapsedRaw,MaxRSS,Submit,Start,MaxRSS,' |
|
|
22 |
'CPUTimeRAW,ReqMem,AllocCPUs,AveVMSize', '-j'] |
|
|
23 |
|
|
|
24 |
data = [] |
|
|
25 |
for i, j in enumerate(main_jobs): |
|
|
26 |
if i % 1000 == 0: |
|
|
27 |
print(f'{i}/{len(main_jobs)}') |
|
|
28 |
eid = j.external_id |
|
|
29 |
extra_info = '' |
|
|
30 |
rvals = StringIO(check_output(sacct + [eid]).decode('ascii')) |
|
|
31 |
_d = pd.read_csv(rvals, sep='|') |
|
|
32 |
_d['QiitaID'] = j.id |
|
|
33 |
cmd = j.command |
|
|
34 |
s = j.command.software |
|
|
35 |
try: |
|
|
36 |
samples, columns, input_size = j.shape |
|
|
37 |
except QiitaDBUnknownIDError: |
|
|
38 |
# this will be raised if the study or the analysis has been deleted; |
|
|
39 |
# in other words, the processing_job was ran but the details about it |
|
|
40 |
# were erased when the user deleted them - however, we keep the job for |
|
|
41 |
# the record |
|
|
42 |
continue |
|
|
43 |
except TypeError as e: |
|
|
44 |
# similar to the except above, exept that for these 2 commands, we have |
|
|
45 |
# the study_id as None |
|
|
46 |
if cmd.name in {'create_sample_template', 'delete_sample_template', |
|
|
47 |
'list_remote_files'}: |
|
|
48 |
continue |
|
|
49 |
else: |
|
|
50 |
raise e |
|
|
51 |
|
|
|
52 |
sname = s.name |
|
|
53 |
|
|
|
54 |
if cmd.name == 'release_validators': |
|
|
55 |
ej = ProcessingJob(j.parameters.values['job']) |
|
|
56 |
extra_info = ej.command.name |
|
|
57 |
samples, columns, input_size = ej.shape |
|
|
58 |
elif cmd.name == 'complete_job': |
|
|
59 |
artifacts = loads(j.parameters.values['payload'])['artifacts'] |
|
|
60 |
if artifacts is not None: |
|
|
61 |
extra_info = ','.join({ |
|
|
62 |
x['artifact_type'] for x in artifacts.values() |
|
|
63 |
if 'artifact_type' in x}) |
|
|
64 |
elif cmd.name == 'Validate': |
|
|
65 |
input_size = sum([len(x) for x in loads( |
|
|
66 |
j.parameters.values['files']).values()]) |
|
|
67 |
sname = f"{sname} - {j.parameters.values['artifact_type']}" |
|
|
68 |
elif cmd.name == 'Alpha rarefaction curves [alpha_rarefaction]': |
|
|
69 |
extra_info = j.parameters.values[ |
|
|
70 |
('The number of rarefaction depths to include between min_depth ' |
|
|
71 |
'and max_depth. (steps)')] |
|
|
72 |
|
|
|
73 |
_d['external_id'] = eid |
|
|
74 |
_d['sId'] = s.id |
|
|
75 |
_d['sName'] = sname |
|
|
76 |
_d['sVersion'] = s.version |
|
|
77 |
_d['cId'] = cmd.id |
|
|
78 |
_d['cName'] = cmd.name |
|
|
79 |
_d['samples'] = samples |
|
|
80 |
_d['columns'] = columns |
|
|
81 |
_d['input_size'] = input_size |
|
|
82 |
_d['extra_info'] = extra_info |
|
|
83 |
_d.drop(columns=['Unnamed: 10'], inplace=True) |
|
|
84 |
data.append(_d) |
|
|
85 |
|
|
|
86 |
data = pd.concat(data) |
|
|
87 |
|
|
|
88 |
# In slurm, each JobID is represented by 3 rows in the dataframe: |
|
|
89 |
# - external_id: overall container for the job and its associated |
|
|
90 |
# requests. When the Timelimit is hit, the container |
|
|
91 |
# would take care of completing/stopping the |
|
|
92 |
# external_id.batch job. |
|
|
93 |
# - external_id.batch: it's a container job, it provides how |
|
|
94 |
# much memory it uses and cpus allocated, etc. |
|
|
95 |
# - external_id.extern: takes into account anything that happens |
|
|
96 |
# outside processing but yet is included in |
|
|
97 |
# the container resources. As in, if you ssh |
|
|
98 |
# to the node and do something additional or run |
|
|
99 |
# a prolog script, that processing would be under |
|
|
100 |
# external_id but separate from external_id.batch. |
|
|
101 |
# Here we are going to merge all this info into a single row + some |
|
|
102 |
# other columns |
|
|
103 |
date_fmt = '%Y-%m-%dT%H:%M:%S' |
|
|
104 |
|
|
|
105 |
df = [] |
|
|
106 |
for eid, __df in data.groupby('external_id'): |
|
|
107 |
tmp = __df.iloc[1].copy() |
|
|
108 |
# Calculating WaitTime, basically how long did the job took to start |
|
|
109 |
# this is useful for some general profiling |
|
|
110 |
tmp['WaitTime'] = datetime.strptime( |
|
|
111 |
__df.iloc[0].Start, date_fmt) - datetime.strptime( |
|
|
112 |
__df.iloc[0].Submit, date_fmt) |
|
|
113 |
df.append(tmp) |
|
|
114 |
df = pd.DataFrame(df) |
|
|
115 |
|
|
|
116 |
# This is important as we are transforming the MaxRSS to raw value |
|
|
117 |
# so we need to confirm that there is no other suffixes |
|
|
118 |
print('Make sure that only 0/K/M exist', set( |
|
|
119 |
df.MaxRSS.apply(lambda x: str(x)[-1]))) |
|
|
120 |
|
|
|
121 |
# Generating new columns |
|
|
122 |
df['MaxRSSRaw'] = df.MaxRSS.apply(lambda x: MaxRSS_helper(str(x))) |
|
|
123 |
df['ElapsedRawTime'] = df.ElapsedRaw.apply( |
|
|
124 |
lambda x: timedelta(seconds=float(x))) |
|
|
125 |
|
|
|
126 |
# Thu, Apr 27, 2023 was the first time Jeff and I changed the old allocations |
|
|
127 |
# (from barnacle) to a better allocation so using job 1265533 as the |
|
|
128 |
# before/after so we only use the latests for the newest version |
|
|
129 |
df['updated'] = df.external_id.apply( |
|
|
130 |
lambda x: 'after' if int(x) >= 1265533 else 'before') |
|
|
131 |
|
|
|
132 |
fn = join('/panfs', 'qiita', f'jobs_{df.Start.max()[:10]}.tsv.gz') |
|
|
133 |
df.to_csv(fn, sep='\t', index=False) |