--- a +++ b/notebooks/resource-allocation/generate-allocation-summary-arrays.py @@ -0,0 +1,239 @@ +from qiita_db.util import MaxRSS_helper +from qiita_db.software import Software +import datetime +from io import StringIO +from subprocess import check_output +import pandas as pd +from os.path import join + +# This is an example script to collect the data we need from SLURM, the plan +# is that in the near future we will clean up and add these to the Qiita's main +# code and then have cronjobs to run them. + +# at time of writting we have: +# qp-spades spades +# (*) qp-woltka Woltka v0.1.4 +# qp-woltka SynDNA Woltka +# qp-woltka Calculate Cell Counts +# (*) qp-meta Sortmerna v2.1b +# (*) qp-fastp-minimap2 Adapter and host filtering v2023.12 +# ... and the admin plugin +# (*) qp-klp +# Here we are only going to create summaries for (*) + + +sacct = ['sacct', '-p', + '--format=JobName,JobID,ElapsedRaw,MaxRSS,ReqMem', '-j'] +# for the non admin jobs, we will use jobs from the last six months +six_months = datetime.date.today() - datetime.timedelta(weeks=6*4) + +print('The current "sofware - commands" that use job-arrays are:') +for s in Software.iter(): + if 'ENVIRONMENT="' in s.environment_script: + for c in s.commands: + print(f"{s.name} - {c.name}") + +# 1. Command: woltka + +fn = join('/panfs', 'qiita', 'jobs_woltka.tsv.gz') +print(f"Generating the summary for the woltka jobs: {fn}.") + +cmds = [c for s in Software.iter(False) + if 'woltka' in s.name for c in s.commands] +jobs = [j for c in cmds for j in c.processing_jobs if j.status == 'success' and + j.heartbeat.date() > six_months and j.input_artifacts] + +data = [] +for j in jobs: + size = sum([fp['fp_size'] for fp in j.input_artifacts[0].filepaths]) + jid, mjid = j.external_id.strip().split() + rvals = StringIO(check_output(sacct + [jid]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + jmem = _d.MaxRSS.apply(lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + jwt = _d.ElapsedRaw.max() + + rvals = StringIO(check_output(sacct + [mjid]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + mmem = _d.MaxRSS.apply(lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + mwt = _d.ElapsedRaw.max() + + data.append({ + 'jid': j.id, 'sjid': jid, 'mem': jmem, 'wt': jwt, 'type': 'main', + 'db': j.parameters.values['Database'].split('/')[-1]}) + data.append( + {'jid': j.id, 'sjid': mjid, 'mem': mmem, 'wt': mwt, 'type': 'merge', + 'db': j.parameters.values['Database'].split('/')[-1]}) +df = pd.DataFrame(data) +df.to_csv(fn, sep='\t', index=False) + +# 2. qp-meta Sortmerna + +fn = join('/panfs', 'qiita', 'jobs_sortmerna.tsv.gz') +print(f"Generating the summary for the woltka jobs: {fn}.") + +# for woltka we will only use jobs from the last 6 months +cmds = [c for s in Software.iter(False) + if 'minimap2' in s.name.lower() for c in s.commands] +jobs = [j for c in cmds for j in c.processing_jobs if j.status == 'success' and + j.heartbeat.date() > six_months and j.input_artifacts] + +data = [] +for j in jobs: + size = sum([fp['fp_size'] for fp in j.input_artifacts[0].filepaths]) + jid, mjid = j.external_id.strip().split() + rvals = StringIO(check_output(sacct + [jid]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + jmem = _d.MaxRSS.apply(lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + jwt = _d.ElapsedRaw.max() + + rvals = StringIO(check_output(sacct + [mjid]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + mmem = _d.MaxRSS.apply(lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + mwt = _d.ElapsedRaw.max() + + data.append({ + 'jid': j.id, 'sjid': jid, 'mem': jmem, 'wt': jwt, 'type': 'main'}) + data.append( + {'jid': j.id, 'sjid': mjid, 'mem': mmem, 'wt': mwt, 'type': 'merge'}) +df = pd.DataFrame(data) +df.to_csv(fn, sep='\t', index=False) + + +# 3. Adapter and host filtering. Note that there is a new version deployed on +# Jan 2024 so the current results will not be the most accurate + +fn = join('/panfs', 'qiita', 'jobs_adapter_host.tsv.gz') +print(f"Generating the summary for the woltka jobs: {fn}.") + +# for woltka we will only use jobs from the last 6 months +cmds = [c for s in Software.iter(False) + if 'meta' in s.name.lower() for c in s.commands] +jobs = [j for c in cmds if 'sortmerna' in c.name.lower() + for j in c.processing_jobs if j.status == 'success' and + j.heartbeat.date() > six_months and j.input_artifacts] + +data = [] +for j in jobs: + size = sum([fp['fp_size'] for fp in j.input_artifacts[0].filepaths]) + jid, mjid = j.external_id.strip().split() + rvals = StringIO(check_output(sacct + [jid]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + jmem = _d.MaxRSS.apply(lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + jwt = _d.ElapsedRaw.max() + + rvals = StringIO(check_output(sacct + [mjid]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + mmem = _d.MaxRSS.apply(lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + mwt = _d.ElapsedRaw.max() + + data.append({ + 'jid': j.id, 'sjid': jid, 'mem': jmem, 'wt': jwt, 'type': 'main'}) + data.append( + {'jid': j.id, 'sjid': mjid, 'mem': mmem, 'wt': mwt, 'type': 'merge'}) +df = pd.DataFrame(data) +df.to_csv(fn, sep='\t', index=False) + + +# 4. The SPP! + +fn = join('/panfs', 'qiita', 'jobs_spp.tsv.gz') +print(f"Generating the summary for the SPP jobs: {fn}.") + +# for the SPP we will look at jobs from the last year +year = datetime.date.today() - datetime.timedelta(days=365) +cmds = [c for s in Software.iter(False) + if s.name == 'qp-klp' for c in s.commands] +jobs = [j for c in cmds for j in c.processing_jobs if j.status == 'success' and + j.heartbeat.date() > year] + +# for the SPP we need to find the jobs that were actually run, this means +# looping throught the existing slurm jobs and finding them +max_inter = 2000 + +data = [] +for job in jobs: + jei = int(job.external_id) + rvals = StringIO( + check_output(sacct + [str(jei)]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + mem = _d.MaxRSS.apply( + lambda x: x if type(x) is not str else MaxRSS_helper(x)).max() + wt = _d.ElapsedRaw.max() + # the current "easy" way to determine if amplicon or other is to check + # the file extension of the filename + stype = 'other' + if job.parameters.values['sample_sheet']['filename'].endswith('.txt'): + stype = 'amplicon' + rid = job.parameters.values['run_identifier'] + data.append( + {'jid': job.id, 'sjid': jei, 'mem': mem, 'stype': stype, 'wt': wt, + 'type': 'main', 'rid': rid, 'name': _d.JobName[0]}) + + # let's look for the convert job + for jid in range(jei + 1, jei + max_inter): + rvals = StringIO(check_output(sacct + [str(jid)]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + if [1 for x in _d.JobName.values if x.startswith(job.id)]: + cjid = int(_d.JobID[0]) + mem = _d.MaxRSS.apply( + lambda x: x if type(x) is not str else MaxRSS_helper(x)).max() + wt = _d.ElapsedRaw.max() + + data.append( + {'jid': job.id, 'sjid': cjid, 'mem': mem, 'stype': stype, + 'wt': wt, 'type': 'convert', 'rid': rid, + 'name': _d.JobName[0]}) + + # now let's look for the next step, if amplicon that's fastqc but + # if other that's qc/nuqc + for jid in range(cjid + 1, cjid + max_inter): + rvals = StringIO( + check_output(sacct + [str(jid)]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + if [1 for x in _d.JobName.values if x.startswith(job.id)]: + qc_jid = _d.JobIDRaw.apply( + lambda x: int(x.split('.')[0])).max() + qcmem = _d.MaxRSS.apply( + lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + qcwt = _d.ElapsedRaw.max() + + if stype == 'amplicon': + data.append( + {'jid': job.id, 'sjid': qc_jid, 'mem': qcmem, + 'stype': stype, 'wt': qcwt, 'type': 'fastqc', + 'rid': rid, 'name': _d.JobName[0]}) + else: + data.append( + {'jid': job.id, 'sjid': qc_jid, 'mem': qcmem, + 'stype': stype, 'wt': qcwt, 'type': 'qc', + 'rid': rid, 'name': _d.JobName[0]}) + for jid in range(qc_jid + 1, qc_jid + max_inter): + rvals = StringIO(check_output( + sacct + [str(jid)]).decode('ascii')) + _d = pd.read_csv(rvals, sep='|') + if [1 for x in _d.JobName.values if x.startswith( + job.id)]: + fqc_jid = _d.JobIDRaw.apply( + lambda x: int(x.split('.')[0])).max() + fqcmem = _d.MaxRSS.apply( + lambda x: x if type(x) is not str + else MaxRSS_helper(x)).max() + fqcwt = _d.ElapsedRaw.max() + data.append( + {'jid': job.id, 'sjid': fqc_jid, + 'mem': fqcmem, 'stype': stype, + 'wt': fqcwt, 'type': 'fastqc', + 'rid': rid, 'name': _d.JobName[0]}) + break + break + break + +df = pd.DataFrame(data) +df.to_csv(fn, sep='\t', index=False)