|
a |
|
b/R/get_grn.R |
|
|
1 |
#' Gene Regulatory Network |
|
|
2 |
#' |
|
|
3 |
#' Get Gene Regulatory Network (GRN) from a data.frame. |
|
|
4 |
#' Optionally, if the gene are clustered, sub_network are build for |
|
|
5 |
#' each cluster. |
|
|
6 |
#' |
|
|
7 |
#' @param X a \code{data.frame}/\code{matrix} with gene expression |
|
|
8 |
#' (genes in columns, samples in rows). |
|
|
9 |
#' @param cluster (optional) clustering result from |
|
|
10 |
#' \code{\link[timeOmics]{getCluster}} |
|
|
11 |
#' @param method network building method, one of c('aracne') |
|
|
12 |
#' @param type character added to node metadata |
|
|
13 |
#' |
|
|
14 |
#' |
|
|
15 |
#' @details |
|
|
16 |
#' Methods of GRN reconstruction are as follows: |
|
|
17 |
#' 'aracne': use ARACNe algorithm on Mutual Information (MI) adjency matrix |
|
|
18 |
#' to remove low MI edges in triangles. |
|
|
19 |
#' |
|
|
20 |
#' @return |
|
|
21 |
#' An igraph object if no cluster informations are given. |
|
|
22 |
#' Otherwise, it returns a list of igraph object (\code{list.igraph}) with |
|
|
23 |
#' a subgraph for each cluster and a global graph with all the genes. |
|
|
24 |
#' |
|
|
25 |
#' @seealso |
|
|
26 |
#' \code{\link[minet]{build.mim}}, |
|
|
27 |
#' \code{\link[minet]{aracne}}, |
|
|
28 |
#' \code{\link[timeOmics]{getCluster}} |
|
|
29 |
#' |
|
|
30 |
#' @examples |
|
|
31 |
#' data(hmp_T2D) |
|
|
32 |
#' # grn only on gene |
|
|
33 |
#' cluster.mRNA <- timeOmics::getCluster(hmp_T2D$getCluster.res, |
|
|
34 |
#' user.block = 'RNA') |
|
|
35 |
#' X <- hmp_T2D$raw$RNA |
|
|
36 |
#' grn.res <- get_grn(X = hmp_T2D$raw$RNA, |
|
|
37 |
#' cluster = cluster.mRNA, |
|
|
38 |
#' method = 'aracne') |
|
|
39 |
#' |
|
|
40 |
#' |
|
|
41 |
#' @importFrom minet build.mim aracne |
|
|
42 |
#' @importFrom magrittr %>% |
|
|
43 |
#' @importFrom dplyr select |
|
|
44 |
#' @importFrom purrr map |
|
|
45 |
#' @importFrom igraph set_vertex_attr graph_from_adjacency_matrix as.undirected |
|
|
46 |
#' @export |
|
|
47 |
get_grn <- function(X, |
|
|
48 |
cluster = NULL, |
|
|
49 |
method = c("aracne"), |
|
|
50 |
type = "gene" |
|
|
51 |
) { |
|
|
52 |
|
|
|
53 |
# check if X |
|
|
54 |
X <- validate_matrix_X(X, var.name = "'X' ") |
|
|
55 |
|
|
|
56 |
# check cluster |
|
|
57 |
cluster <- check_getCluster(cluster) |
|
|
58 |
|
|
|
59 |
# check method, for now only 1 |
|
|
60 |
method <- match.arg(method) |
|
|
61 |
|
|
|
62 |
# check type |
|
|
63 |
type <- check_vector_char(type, X.length = 1, default = "gene") |
|
|
64 |
|
|
|
65 |
if (is.null(cluster)) { |
|
|
66 |
# no clusteing info -> perform grn on all molecules |
|
|
67 |
mim <- minet::build.mim(X) |
|
|
68 |
grn.adj <- minet::aracne(mim) |
|
|
69 |
grn.graph <- igraph::graph_from_adjacency_matrix(grn.adj) %>% |
|
|
70 |
igraph::as.undirected() |
|
|
71 |
|
|
|
72 |
# add type attribute 'type' <- 'Gene' |
|
|
73 |
grn.graph <- igraph::set_vertex_attr(graph = grn.graph, |
|
|
74 |
name = "type", |
|
|
75 |
value = type) |
|
|
76 |
grn.graph <- igraph::set_vertex_attr(graph = grn.graph, |
|
|
77 |
name = "mode", |
|
|
78 |
value = "core") |
|
|
79 |
grn.graph <- igraph::set_vertex_attr(graph = grn.graph, |
|
|
80 |
name = "cluster", |
|
|
81 |
value = "All") |
|
|
82 |
|
|
|
83 |
# res <- list() |
|
|
84 |
return(grn.graph) |
|
|
85 |
} else { |
|
|
86 |
# cluster != NULL we do have cluster info and data are clustered 1. grn |
|
|
87 |
# for all |
|
|
88 |
mim <- minet::build.mim(X) |
|
|
89 |
grn.adj <- minet::aracne(mim) |
|
|
90 |
grn.graph <- igraph::graph_from_adjacency_matrix(grn.adj) %>% |
|
|
91 |
igraph::as.undirected() |
|
|
92 |
|
|
|
93 |
grn.graph <- igraph::set_vertex_attr(graph = grn.graph, |
|
|
94 |
name = "type", |
|
|
95 |
value = type) |
|
|
96 |
grn.graph <- igraph::set_vertex_attr(graph = grn.graph, |
|
|
97 |
name = "mode", |
|
|
98 |
value = "core") |
|
|
99 |
|
|
|
100 |
res <- list() |
|
|
101 |
res[["All"]] <- grn.graph |
|
|
102 |
|
|
|
103 |
# 2. grn by all clusters |
|
|
104 |
mol_cluster <- cluster %>% |
|
|
105 |
split(.$cluster) %>% |
|
|
106 |
purrr::map(~.x$molecule) |
|
|
107 |
X.by.cluster <- purrr::map( |
|
|
108 |
mol_cluster, ~{ |
|
|
109 |
dplyr::select( |
|
|
110 |
as.data.frame(X, check.names = FALSE), |
|
|
111 |
.x |
|
|
112 |
) |
|
|
113 |
} |
|
|
114 |
) |
|
|
115 |
|
|
|
116 |
# names_mol_cluster <- check_name_list(mol_cluster) |
|
|
117 |
for (i in names(mol_cluster)) { |
|
|
118 |
mim.cluster <- minet::build.mim(X.by.cluster[[i]]) |
|
|
119 |
grn.adj.cluster <- minet::aracne(mim.cluster) |
|
|
120 |
grn.graph.cluster <- igraph::graph_from_adjacency_matrix( |
|
|
121 |
grn.adj.cluster) %>% |
|
|
122 |
igraph::as.undirected() |
|
|
123 |
grn.graph.cluster <- igraph::set_vertex_attr( |
|
|
124 |
graph = grn.graph.cluster, |
|
|
125 |
name = "type", |
|
|
126 |
value = type) |
|
|
127 |
grn.graph.cluster <- igraph::set_vertex_attr( |
|
|
128 |
graph = grn.graph.cluster, |
|
|
129 |
name = "mode", |
|
|
130 |
value = "core") |
|
|
131 |
grn.graph.cluster <- igraph::set_vertex_attr( |
|
|
132 |
graph = grn.graph.cluster, |
|
|
133 |
name = "cluster", |
|
|
134 |
value = i) |
|
|
135 |
|
|
|
136 |
res[[i]] <- grn.graph.cluster |
|
|
137 |
|
|
|
138 |
# also add cluster info to 'All' graph |
|
|
139 |
res[["All"]] <- igraph::set_vertex_attr( |
|
|
140 |
graph = res[["All"]], name = "cluster", |
|
|
141 |
value = i, |
|
|
142 |
index = igraph::V(grn.graph.cluster)$name |
|
|
143 |
) |
|
|
144 |
|
|
|
145 |
} |
|
|
146 |
class(res) <- c("list.igraph") |
|
|
147 |
} |
|
|
148 |
return(res) |
|
|
149 |
} |
|
|
150 |
|
|
|
151 |
|