|
a |
|
b/R/RWR.R |
|
|
1 |
#' Random Walk with Restart |
|
|
2 |
#' |
|
|
3 |
#' This function performs a propagation analysis by random walk with restart |
|
|
4 |
#' in a multi-layered network from specific seeds. |
|
|
5 |
#' |
|
|
6 |
#' @param X an igraph or list.igraph object. |
|
|
7 |
#' @param seed a character vector. Only seeds present in X are considered. |
|
|
8 |
#' @param r a numeric value between 0 and 1. |
|
|
9 |
#' It sets the probability of restarting to a seed node after each step. |
|
|
10 |
#' |
|
|
11 |
#' @return |
|
|
12 |
#' Each element of X returns a list (class = 'rwr') |
|
|
13 |
#' containing the following elements: |
|
|
14 |
#' \item{rwr}{a \code{data.frame}, the RWR results for each valid seed.} |
|
|
15 |
#' \item{seed}{a character vector with the valid seeds} |
|
|
16 |
#' \item{graph}{\code{igraph} object from X} |
|
|
17 |
#' If X is a \code{list.igraph}, the returned object is a \code{list.rwr}. |
|
|
18 |
#' |
|
|
19 |
#' @seealso |
|
|
20 |
# \code{\link[RandomWalkRestartMH]{Random.Walk.Restart.Multiplex}}, |
|
|
21 |
#' \code{\link[netOmics]{rwr_find_seeds_between_attributes}}, |
|
|
22 |
#' \code{\link[netOmics]{rwr_find_closest_type}} |
|
|
23 |
#' |
|
|
24 |
#' @examples |
|
|
25 |
#' graph1 <- igraph::graph_from_data_frame( |
|
|
26 |
#' list(from = c('A', 'B', 'A', 'D', 'C', 'A', 'C'), |
|
|
27 |
#' to = c('B', 'C', 'D', 'E', 'D', 'F', 'G')), |
|
|
28 |
#' directed = FALSE) |
|
|
29 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
30 |
#' name = 'type', |
|
|
31 |
#' index = c('A','B','C'), |
|
|
32 |
#' value = '1') |
|
|
33 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
34 |
#' name = 'type', |
|
|
35 |
#' index = c('D','E'), |
|
|
36 |
#' value = '2') |
|
|
37 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
38 |
#' name = 'type', |
|
|
39 |
#' index = c('F', 'G'), |
|
|
40 |
#' value = '3') |
|
|
41 |
#' |
|
|
42 |
#' rwr_res <- random_walk_restart(X = graph1, |
|
|
43 |
#' seed = c('A', 'B', 'C', 'D', 'E')) |
|
|
44 |
#' |
|
|
45 |
# @importFrom RandomWalkRestartMH create.multiplex |
|
|
46 |
# @importFrom RandomWalkRestartMH compute.adjacency.matrix |
|
|
47 |
# @importFrom RandomWalkRestartMH normalize.multiplex.adjacency |
|
|
48 |
# @importFrom RandomWalkRestartMH Random.Walk.Restart.Multiplex |
|
|
49 |
#' @importFrom dplyr mutate left_join |
|
|
50 |
#' @importFrom purrr imap_dfr |
|
|
51 |
#' @importFrom magrittr %>% |
|
|
52 |
#' @export |
|
|
53 |
random_walk_restart <- function(X, seed = NULL, r = 0.7) { |
|
|
54 |
|
|
|
55 |
# check X is graph or list of graph |
|
|
56 |
X <- check_graph(X) |
|
|
57 |
|
|
|
58 |
# check seed |
|
|
59 |
seed <- check_vector_char(X = seed, var.name = "'seed' ") |
|
|
60 |
|
|
|
61 |
# check r |
|
|
62 |
r <- check_single_numeric_value(r, min = 0, max = 1, var.name = "'r' ") |
|
|
63 |
|
|
|
64 |
# delta |
|
|
65 |
delta <- 0.5 |
|
|
66 |
|
|
|
67 |
res <- list() |
|
|
68 |
if (is(X, "list.igraph")) { |
|
|
69 |
# apply RWR on each graph |
|
|
70 |
for (i in seq_along(X)) { |
|
|
71 |
Xi <- X[[i]] |
|
|
72 |
Xi <- remove_unconnected_nodes(Xi) |
|
|
73 |
index_name_i <- ifelse( |
|
|
74 |
!is.null(names(X)[i]), |
|
|
75 |
names(X)[i], |
|
|
76 |
i |
|
|
77 |
) |
|
|
78 |
|
|
|
79 |
## possible implementation to benchmark: extract graph component |
|
|
80 |
## and make couples with seeds and matching subgraph |
|
|
81 |
|
|
|
82 |
seed_xi <- intersect(seed, igraph::V(Xi)$name) |
|
|
83 |
# prevent the error: 'Some of the seeds are not nodes of the network |
|
|
84 |
|
|
|
85 |
# rwr layer names: to change if we include some day multiplex |
|
|
86 |
# network |
|
|
87 |
layers_name <- ifelse( |
|
|
88 |
!is.null(names(X)[i]), |
|
|
89 |
names(X)[i], |
|
|
90 |
"graph" |
|
|
91 |
) |
|
|
92 |
|
|
|
93 |
# multiplex <- RandomWalkRestartMH::create.multiplex(L1 = |
|
|
94 |
# Xi,Layers_Name=layers_name) |
|
|
95 |
#multiplex <- RandomWalkRestartMH::create.multiplex( |
|
|
96 |
multiplex <- create.multiplex( |
|
|
97 |
LayersList = list(L1 = Xi), |
|
|
98 |
Layers_Name = layers_name |
|
|
99 |
) |
|
|
100 |
# adj_matrix <- RandomWalkRestartMH::compute.adjacency.matrix( |
|
|
101 |
adj_matrix <- compute.adjacency.matrix( |
|
|
102 |
x = multiplex, |
|
|
103 |
delta = delta) |
|
|
104 |
adj_matrix_norm <- |
|
|
105 |
normalize.multiplex.adjacency( |
|
|
106 |
# RandomWalkRestartMH::normalize.multiplex.adjacency( |
|
|
107 |
x = adj_matrix) # time/RAM consuming |
|
|
108 |
|
|
|
109 |
res_tmp <- list() |
|
|
110 |
for (seed_xi_i in seed_xi) { |
|
|
111 |
# rwr_res <- RandomWalkRestartMH::Random.Walk.Restart.Multiplex( |
|
|
112 |
rwr_res <- Random.Walk.Restart.Multiplex( |
|
|
113 |
|
|
|
114 |
x = adj_matrix_norm, |
|
|
115 |
MultiplexObject = multiplex, |
|
|
116 |
Seeds = seed_xi_i, |
|
|
117 |
r = r |
|
|
118 |
) |
|
|
119 |
res_tmp[[seed_xi_i]] <- rwr_res |
|
|
120 |
} |
|
|
121 |
if (!is_empty(seed_xi)) { |
|
|
122 |
res[[index_name_i]] <- list() |
|
|
123 |
res[[index_name_i]][["rwr"]] <- purrr::imap_dfr( |
|
|
124 |
res_tmp, ~{ |
|
|
125 |
.x$RWRM_Results %>% |
|
|
126 |
dplyr::mutate(SeedName = .y) |
|
|
127 |
} |
|
|
128 |
) %>% |
|
|
129 |
dplyr::left_join( |
|
|
130 |
as.data.frame(vertex_attr(X[[i]])), |
|
|
131 |
by = c(NodeNames = "name") |
|
|
132 |
) |
|
|
133 |
res[[index_name_i]][["graph"]] <- X[[i]] |
|
|
134 |
res[[index_name_i]][["seed"]] <- seed_xi |
|
|
135 |
class(res[[index_name_i]]) <- "rwr" |
|
|
136 |
} |
|
|
137 |
class(res) <- c("list.rwr") |
|
|
138 |
} |
|
|
139 |
} else { |
|
|
140 |
# X is a single graph |
|
|
141 |
Xi <- remove_unconnected_nodes(X) |
|
|
142 |
|
|
|
143 |
## possible implementation to benchmark: extract graph component and |
|
|
144 |
## make couples with seeds and matching subgraph |
|
|
145 |
|
|
|
146 |
seed_xi <- intersect(seed, igraph::V(Xi)$name) |
|
|
147 |
# prevent the error: Some of the seeds are not nodes of the network |
|
|
148 |
|
|
|
149 |
# rwr layer names: to change if we include some day multiplex network |
|
|
150 |
# layers_name <- ifelse(!is.null(names(X)[i]), names(X)[i], 'graph') |
|
|
151 |
layers_name <- c("graph") |
|
|
152 |
|
|
|
153 |
# multiplex <- RandomWalkRestartMH::create.multiplex(L1 = |
|
|
154 |
# Xi,Layers_Name=layers_name) |
|
|
155 |
multiplex <- create.multiplex( |
|
|
156 |
#RandomWalkRestartMH::create.multiplex( |
|
|
157 |
LayersList = list(L1 = Xi), |
|
|
158 |
Layers_Name = layers_name |
|
|
159 |
) |
|
|
160 |
|
|
|
161 |
adj_matrix <- compute.adjacency.matrix( |
|
|
162 |
#RandomWalkRestartMH::compute.adjacency.matrix( |
|
|
163 |
x = multiplex, |
|
|
164 |
delta = delta) |
|
|
165 |
adj_matrix_norm <- normalize.multiplex.adjacency( |
|
|
166 |
#RandomWalkRestartMH::normalize.multiplex.adjacency( |
|
|
167 |
x = adj_matrix) # time/RAM consuming |
|
|
168 |
|
|
|
169 |
res_tmp <- list() |
|
|
170 |
for (seed_xi_i in seed_xi) { |
|
|
171 |
rwr_res <- Random.Walk.Restart.Multiplex( |
|
|
172 |
#rwr_res <- RandomWalkRestartMH::Random.Walk.Restart.Multiplex( |
|
|
173 |
x = adj_matrix_norm, |
|
|
174 |
MultiplexObject = multiplex, |
|
|
175 |
Seeds = seed_xi_i, |
|
|
176 |
r = r |
|
|
177 |
) |
|
|
178 |
res_tmp[[seed_xi_i]] <- rwr_res |
|
|
179 |
} |
|
|
180 |
# all seeds for a graph X has been computed -> merge result (more |
|
|
181 |
# efficient than having seperate results + associated graph) |
|
|
182 |
if (!is_empty(seed_xi)) { |
|
|
183 |
res[["rwr"]] <- purrr::imap_dfr( |
|
|
184 |
res_tmp, ~{ |
|
|
185 |
.x$RWRM_Results %>% |
|
|
186 |
dplyr::mutate(SeedName = .y) |
|
|
187 |
} |
|
|
188 |
) %>% |
|
|
189 |
dplyr::left_join( |
|
|
190 |
as.data.frame(vertex_attr(X)), |
|
|
191 |
by = c(NodeNames = "name") |
|
|
192 |
) |
|
|
193 |
res[["graph"]] <- X |
|
|
194 |
res[["seed"]] <- seed_xi |
|
|
195 |
} |
|
|
196 |
|
|
|
197 |
class(res) <- c("rwr") |
|
|
198 |
} |
|
|
199 |
return(res) |
|
|
200 |
} |
|
|
201 |
|
|
|
202 |
#' @importFrom igraph delete_vertices simplify degree |
|
|
203 |
remove_unconnected_nodes <- function(X) { |
|
|
204 |
# remove unconnected nodes but does not simplify |
|
|
205 |
X.simplified <- igraph::simplify(X) |
|
|
206 |
isolated_nodes = which(igraph::degree(X.simplified) == 0) |
|
|
207 |
X = igraph::delete_vertices(X, isolated_nodes) |
|
|
208 |
return(X) |
|
|
209 |
} |
|
|
210 |
|
|
|
211 |
#' @importFrom dplyr filter pull top_n |
|
|
212 |
#' @importFrom igraph induced_subgraph set_vertex_attr V |
|
|
213 |
rwr_top_k_graph <- function(X, RWRM_Result_Object, Seed, k = 15) { |
|
|
214 |
Top_Results_Nodes <- RWRM_Result_Object %>% |
|
|
215 |
dplyr::filter(SeedName == Seed) %>% |
|
|
216 |
dplyr::top_n(n = k, wt = Score) %>% |
|
|
217 |
dplyr::pull(NodeNames) |
|
|
218 |
Query_Nodes <- intersect( |
|
|
219 |
c(Seed, Top_Results_Nodes), |
|
|
220 |
igraph::V(X)$name |
|
|
221 |
) |
|
|
222 |
Target_Nodes <- intersect(Top_Results_Nodes, igraph::V(X)$name) |
|
|
223 |
|
|
|
224 |
if (!purrr::is_empty(Query_Nodes)) { |
|
|
225 |
top_k_graph <- igraph::induced_subgraph(graph = X, |
|
|
226 |
vids = Query_Nodes) |
|
|
227 |
top_k_graph <- igraph::set_vertex_attr(graph = top_k_graph, |
|
|
228 |
name = "rwr", |
|
|
229 |
index = Seed, |
|
|
230 |
value = "seed") |
|
|
231 |
top_k_graph <- igraph::set_vertex_attr(graph = top_k_graph, |
|
|
232 |
name = "rwr", |
|
|
233 |
index = Target_Nodes, |
|
|
234 |
value = "target") |
|
|
235 |
return(top_k_graph) |
|
|
236 |
} |
|
|
237 |
return(NULL) |
|
|
238 |
} |
|
|
239 |
|
|
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
|
243 |
#' RWR Find seeds between attributes |
|
|
244 |
#' |
|
|
245 |
#' From rwr results, this function returns a subgraph if any vertex shares |
|
|
246 |
#' different attributes value. |
|
|
247 |
#' In biological context, this might be useful to identify vertex shared between |
|
|
248 |
#' clusters or omics types. |
|
|
249 |
#' |
|
|
250 |
#' @param X a random walk result from \code{random_walk_restart} |
|
|
251 |
#' @param seed a character vector or NULL. If NULL, all the seeds from X |
|
|
252 |
#' are considered. |
|
|
253 |
#' @param attribute a character value or NULL. |
|
|
254 |
#' If NULL, the closest node is returned. |
|
|
255 |
#' @param k a integer, k closest nodes to consider in the search |
|
|
256 |
#' |
|
|
257 |
#' @return |
|
|
258 |
#' A list of igraph object for each seed. |
|
|
259 |
#' If X is a list, it returns a list of list of graph. |
|
|
260 |
#' |
|
|
261 |
#' @examples |
|
|
262 |
#' graph1 <- igraph::graph_from_data_frame( |
|
|
263 |
#' list(from = c("A", "B", "A", "D", "C", "A", "C"), |
|
|
264 |
#' to = c("B", "C", "D", "E", "D", "F", "G")), |
|
|
265 |
#' directed = FALSE) |
|
|
266 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
267 |
#' name = 'type', |
|
|
268 |
#' index = c("A","B","C"), |
|
|
269 |
#' value = "1") |
|
|
270 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
271 |
#' name = 'type', |
|
|
272 |
#' index = c("D","E"), |
|
|
273 |
#' value = "2") |
|
|
274 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
275 |
#' name = 'type', |
|
|
276 |
#' index = c("F", "G"), |
|
|
277 |
#' value = "3") |
|
|
278 |
#' |
|
|
279 |
#' rwr_res <- random_walk_restart(X = graph1, |
|
|
280 |
#' seed = c("A", "B", "C", "D", "E")) |
|
|
281 |
#' rwr_res_type <- rwr_find_seeds_between_attributes(X = rwr_res, |
|
|
282 |
#' attribute = "type", |
|
|
283 |
#' k = 3) |
|
|
284 |
#' |
|
|
285 |
#' @export |
|
|
286 |
rwr_find_seeds_between_attributes <- function(X, |
|
|
287 |
seed = NULL, |
|
|
288 |
k = 15, |
|
|
289 |
attribute = "type"){ |
|
|
290 |
# check X |
|
|
291 |
if(!(is(X, "rwr") | is(X, "list.rwr"))){ |
|
|
292 |
stop("X must be a random walk result") |
|
|
293 |
} |
|
|
294 |
|
|
|
295 |
# check k |
|
|
296 |
if(!is.null(k)){ |
|
|
297 |
k <- check_single_numeric_value(k, min = 0, |
|
|
298 |
max = 200, |
|
|
299 |
var.name = "'k' ") |
|
|
300 |
|
|
|
301 |
} else { |
|
|
302 |
k <- 15 |
|
|
303 |
} |
|
|
304 |
|
|
|
305 |
# check seed # if seed is null, all seeds found in rwr are considered |
|
|
306 |
if(!is.null(seed)){ |
|
|
307 |
# don't check if all seeds are in vids -> NULL results anyway |
|
|
308 |
seed <- check_vector_char(X = seed, |
|
|
309 |
var.name = "'seed' ", |
|
|
310 |
default = NULL) |
|
|
311 |
} |
|
|
312 |
|
|
|
313 |
# check attribute |
|
|
314 |
attribute <- check_vector_char(X = attribute, var.name = "'attribute' ", |
|
|
315 |
default = "type", |
|
|
316 |
X.length = 1) |
|
|
317 |
|
|
|
318 |
if(is(X, "rwr")){ |
|
|
319 |
if(is.null(seed)){ # seed = all seeds |
|
|
320 |
seed <- X$seed # can be NULL |
|
|
321 |
} |
|
|
322 |
res <- .rwr_find_seeds_between_attribute(rwr = X, |
|
|
323 |
k = k, |
|
|
324 |
attribute = attribute, |
|
|
325 |
seed = seed) |
|
|
326 |
class(res) <- "rwr.attributes" |
|
|
327 |
} else { # X is list.res |
|
|
328 |
# should not be run on list.res because each item |
|
|
329 |
# contains a unique cluster |
|
|
330 |
res <- list() |
|
|
331 |
|
|
|
332 |
for(i in seq_along(X)){ |
|
|
333 |
index_name_i <- ifelse(!is.null(names(X)[i]), names(X)[i], i) |
|
|
334 |
|
|
|
335 |
if(is.null(seed)){ # seed = all seeds |
|
|
336 |
seed_i <- X[[index_name_i]]$seed # can be NULL |
|
|
337 |
} else { |
|
|
338 |
seed_i <- seed |
|
|
339 |
} |
|
|
340 |
|
|
|
341 |
res[[index_name_i]] <- .rwr_find_seeds_between_attribute( |
|
|
342 |
rwr = X[[index_name_i]], |
|
|
343 |
k = k, |
|
|
344 |
attribute = attribute, |
|
|
345 |
seed = seed_i) |
|
|
346 |
class(res[[index_name_i]]) <- "rwr.attributes" |
|
|
347 |
|
|
|
348 |
} |
|
|
349 |
class(res) <- "list.rwr.attributes" |
|
|
350 |
} |
|
|
351 |
return(res) |
|
|
352 |
} |
|
|
353 |
|
|
|
354 |
#' @importFrom igraph vertex_attr |
|
|
355 |
.rwr_find_seeds_between_attribute <- function(rwr, |
|
|
356 |
k, |
|
|
357 |
attribute, |
|
|
358 |
seed){ |
|
|
359 |
res <- list() |
|
|
360 |
for(seed_xi in seed){ |
|
|
361 |
# print(seed_xi) |
|
|
362 |
top_k_graph <- rwr_top_k_graph(X = rwr$graph, |
|
|
363 |
RWRM_Result_Object = rwr$rwr, |
|
|
364 |
Seed = seed_xi, k = k) |
|
|
365 |
|
|
|
366 |
# find different cluster |
|
|
367 |
if(!is.null(top_k_graph)){ |
|
|
368 |
if(nrow(table(igraph::vertex_attr(top_k_graph)[[attribute]])) >= 2){ |
|
|
369 |
# generic version |
|
|
370 |
res[[seed_xi]] <- top_k_graph |
|
|
371 |
} |
|
|
372 |
} |
|
|
373 |
} |
|
|
374 |
return(res) |
|
|
375 |
} |
|
|
376 |
|
|
|
377 |
|
|
|
378 |
|
|
|
379 |
#' RWR Find closest nodes |
|
|
380 |
#' |
|
|
381 |
#' From a rwr results, this function returns the closest nodes from a seed with |
|
|
382 |
#' a given attribute and value. |
|
|
383 |
#' In biological context, it might be useful to get the closest Gene Ontology |
|
|
384 |
#' annotation nodes from unannotated seeds. |
|
|
385 |
#' |
|
|
386 |
#' @param X a random walk result from \code{random_walk_restart} |
|
|
387 |
#' @param seed a character vector or NULL. If NULL, all the seeds |
|
|
388 |
#' from X are considered. |
|
|
389 |
#' @param attribute a character value or NULL. If NULL, |
|
|
390 |
#' the closest node is returned. |
|
|
391 |
#' @param value a character value or NULL. If NULL, the closest node for a given |
|
|
392 |
#' attribute is returned. |
|
|
393 |
#' @param top a numeric value, the top closest nodes to extract |
|
|
394 |
#' |
|
|
395 |
#' |
|
|
396 |
#' |
|
|
397 |
#' @return |
|
|
398 |
#' A list of \code{data.frame} for each seed containing the closest nodes per |
|
|
399 |
#' seed and their vertex attributes. |
|
|
400 |
#' If X is \code{list.rwr}, the returned value is a list of list. |
|
|
401 |
#' |
|
|
402 |
#' |
|
|
403 |
#' @examples |
|
|
404 |
#' graph1 <- igraph::graph_from_data_frame( |
|
|
405 |
#' list(from = c("A", "B", "A", "D", "C", "A", "C"), |
|
|
406 |
#' to = c("B", "C", "D", "E", "D", "F", "G")), |
|
|
407 |
#' directed = FALSE) |
|
|
408 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
409 |
#' name = 'type', |
|
|
410 |
#' index = c("A","B","C"), |
|
|
411 |
#' value = "1") |
|
|
412 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
413 |
#' name = 'type', |
|
|
414 |
#' index = c("D","E"), |
|
|
415 |
#' value = "2") |
|
|
416 |
#' graph1 <- igraph::set_vertex_attr(graph = graph1, |
|
|
417 |
#' name = 'type', |
|
|
418 |
#' index = c("F", "G"), |
|
|
419 |
#' value = "3") |
|
|
420 |
#' |
|
|
421 |
#' rwr_res <- random_walk_restart(X = graph1, |
|
|
422 |
#' seed = c("A", "B", "C", "D", "E")) |
|
|
423 |
#' rwr_find_closest_type(X=rwr_res, attribute = "type", |
|
|
424 |
#' seed = "A") |
|
|
425 |
|
|
|
426 |
|
|
|
427 |
#' @export |
|
|
428 |
rwr_find_closest_type <- function(X, |
|
|
429 |
seed = NULL, |
|
|
430 |
attribute = NULL, |
|
|
431 |
value = NULL, |
|
|
432 |
top = 1){ |
|
|
433 |
# check X |
|
|
434 |
if(!(is(X, "rwr") | is(X, "list.rwr"))){ |
|
|
435 |
stop("X must be a random walk result") |
|
|
436 |
} |
|
|
437 |
|
|
|
438 |
# check attribute or replace with default value |
|
|
439 |
attribute <- check_vector_char(X = attribute, |
|
|
440 |
X.length = 1, |
|
|
441 |
default = NULL, |
|
|
442 |
var.name = "'attribute' ") |
|
|
443 |
|
|
|
444 |
# check value or replace with default value |
|
|
445 |
value <- check_vector_char(X = value, |
|
|
446 |
X.length = 1, |
|
|
447 |
default = NULL, |
|
|
448 |
var.name = "'value' ") |
|
|
449 |
|
|
|
450 |
# check top |
|
|
451 |
top <- check_single_numeric_value(top, var.name = "'top' ") |
|
|
452 |
|
|
|
453 |
# check seed # if seed is null, all seeds found in rwr are considered |
|
|
454 |
if(!is.null(seed)){ |
|
|
455 |
# don't check if all seeds are in vids -> NULL results anyway |
|
|
456 |
seed <- check_vector_char(X = seed, |
|
|
457 |
var.name = "'seed' ", |
|
|
458 |
default = NULL) |
|
|
459 |
} |
|
|
460 |
|
|
|
461 |
if(is(X, "rwr")){ |
|
|
462 |
if(is.null(seed)){ # seed = all seeds |
|
|
463 |
seed <- X$seed # can be NULL |
|
|
464 |
} |
|
|
465 |
res <- .rwr_find_closest(rwr = X, user.attribute = attribute, |
|
|
466 |
seed = seed, |
|
|
467 |
user.value = value, |
|
|
468 |
top = top) |
|
|
469 |
class(res) <- "rwr.closest" |
|
|
470 |
} else { # X is list.res |
|
|
471 |
# should not be run on list.res because each item |
|
|
472 |
# contains a unique cluster |
|
|
473 |
res <- list() |
|
|
474 |
|
|
|
475 |
for(i in seq_along(X)){ |
|
|
476 |
index_name_i <- ifelse(!is.null(names(X)[i]), names(X)[i], i) |
|
|
477 |
|
|
|
478 |
if(is.null(seed)){ # seed = all seeds |
|
|
479 |
seed_i <- X[[index_name_i]]$seed # can be NULL |
|
|
480 |
} else { |
|
|
481 |
seed_i <- seed |
|
|
482 |
} |
|
|
483 |
|
|
|
484 |
res[[index_name_i]] <- .rwr_find_closest(rwr = X[[index_name_i]], |
|
|
485 |
user.attribute = attribute, |
|
|
486 |
seed = seed_i, |
|
|
487 |
user.value = value, |
|
|
488 |
top = top) |
|
|
489 |
class(res[[index_name_i]]) <- "rwr.closest" |
|
|
490 |
|
|
|
491 |
} |
|
|
492 |
class(res) <- "list.rwr.closest" |
|
|
493 |
} |
|
|
494 |
return(res) |
|
|
495 |
} |
|
|
496 |
|
|
|
497 |
#' @importFrom dplyr filter top_n left_join select everything across mutate |
|
|
498 |
#' @importFrom purrr map_dfr |
|
|
499 |
#' @importFrom tidyr pivot_longer |
|
|
500 |
.rwr_find_closest <- function(rwr, user.attribute, user.value, seed, top){ |
|
|
501 |
res <- list() |
|
|
502 |
for(seed_xi in seed){ |
|
|
503 |
rwr.res.filtered <- dplyr::filter(rwr$rwr, SeedName == seed_xi) |
|
|
504 |
# fix to use pivot_longer with different cast columns (integer/logical,) |
|
|
505 |
rwr.res.filtered <- rwr.res.filtered %>% t %>% t %>% as.data.frame() |
|
|
506 |
rwr.res.filtered <- tidyr::pivot_longer(rwr.res.filtered, |
|
|
507 |
names_to = "attribute", |
|
|
508 |
values_to = "value", |
|
|
509 |
-c(NodeNames, Score, SeedName), |
|
|
510 |
#values_ptypes = |
|
|
511 |
# list(value=character()) |
|
|
512 |
) %>% |
|
|
513 |
dplyr::mutate(dplyr::across(dplyr::everything(), as.character)) |
|
|
514 |
|
|
|
515 |
if(!is.null(user.attribute)){ |
|
|
516 |
rwr.res.filtered <- dplyr::filter(rwr.res.filtered, |
|
|
517 |
attribute == user.attribute) |
|
|
518 |
} |
|
|
519 |
if(!is.null(user.value)){ |
|
|
520 |
rwr.res.filtered <- dplyr::filter(rwr.res.filtered, |
|
|
521 |
value == user.value) |
|
|
522 |
} |
|
|
523 |
rwr.res.filtered <- dplyr::top_n(x = rwr.res.filtered, |
|
|
524 |
n = top, |
|
|
525 |
wt = Score) %>% |
|
|
526 |
dplyr::select(c(NodeNames, SeedName)) %>% |
|
|
527 |
unique |
|
|
528 |
if(nrow(rwr.res.filtered) > 0){ |
|
|
529 |
res[[seed_xi]] <- dplyr::left_join( |
|
|
530 |
rwr.res.filtered, |
|
|
531 |
rwr$rwr, |
|
|
532 |
by = c("NodeNames" = "NodeNames", "SeedName" = "SeedName")) %>% |
|
|
533 |
dplyr::select(c(NodeNames, Score, SeedName), |
|
|
534 |
dplyr::everything()) |
|
|
535 |
} |
|
|
536 |
} |
|
|
537 |
#res <- purrr::map_dfr(res, ~.x) |
|
|
538 |
return(res) |
|
|
539 |
} |
|
|
540 |
|
|
|
541 |
|
|
|
542 |
|