[dbb3ea]: / atac / archR / processing / 3_qc.R

Download this file

268 lines (213 with data), 9.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
here::i_am("atac/archR/processing/3_qc.R")
source(here::here("settings.R"))
suppressPackageStartupMessages(library(ArchR))
######################
## Define arguments ##
######################
p <- ArgumentParser(description='')
p$add_argument('--archr_directory', type="character", help='ArchR directory')
p$add_argument('--metadata', type="character", help='metadata file')
p$add_argument('--outdir', type="character", help='Output directory')
p$add_argument('--min_tss_enrichment', type="integer", default=8, help='Minimum TSS enrichment')
p$add_argument('--max_tss_enrichment', type="integer", default=40, help='Minimum TSS enrichment')
p$add_argument('--min_number_fragments', type="integer", default=3000, help='Maximum number of ATAC fragments')
p$add_argument('--max_number_fragments', type="integer", default=300000, help='Maximum number of ATAC fragments')
p$add_argument('--max_blacklist_ratio', type="double", default=0.05, help='Maximum Blacklist Ratio')
p$add_argument('--threads', type="integer", default=1, help='Number of threads')
args <- p$parse_args(commandArgs(TRUE))
#####################
## Define settings ##
#####################
# START TEST ##
# args$archr_directory <- file.path(io$basedir,"processed/atac/archR")
# args$metadata <- file.path(io$basedir,"processed/atac/archR/sample_metadata_after_archR.txt.gz")
# args$min_tss_enrichment <- 9
# args$max_tss_enrichment <- 35
# args$min_number_fragments <- 3500
# args$max_number_fragments <- 250000
# args$max_blacklist_ratio <- 0.05
# args$threads <- 2
# args$outdir <- file.path(io$basedir,"results/atac/archR/qc")
## END TEST ##
# Options
opts$chr <- paste0("chr",1:3)
opts$test <- TRUE
########################
## Load cell metadata ##
########################
sample_metadata <- fread(args$metadata)
# temporary
sample_metadata[is.na(stage),stage:=strsplit(sample,"_") %>% map_chr(1)]
########################
## Load ArchR project ##
########################
# source(here::here("atac/archR/load_archR_project.R"))
setwd(args$archr_directory)
addArchRGenome("mm10")
addArchRThreads(threads = args$threads)
ArchRProject <- loadArchRProject(args$archr_directory)[sample_metadata$cell]
##################
## Subset ArchR ##
##################
if (opts$test) {
cells.to.use <- split(ArchRProject$cellNames,ArchRProject$sample) %>% map(~ head(.,n=100)) %>% unlist
ArchRProject <- ArchRProject[cells.to.use,]
}
# Subset chr for faster computations
tss.granges <- getTSS(ArchRProject)
tss.granges <- tss.granges[seqnames(tss.granges)%in%opts$chr]
#########################
## Plot TSS Enrichment ##
#########################
data_tss.dt <- opts$samples %>% map(function(i) {
plotTSSEnrichment(
ArchRProj = ArchRProject[ArchRProject$Sample==i,],
groupBy = "Sample",
returnDF = TRUE,
TSS = tss.granges
) %>% as.data.table %>% return
}) %>% rbindlist %>%
setnames("group","sample") %>%
melt(id.vars=c("sample","x"))
fwrite(data_tss.dt, sprintf("%s/qc_TSSenrichment.txt.gz",args$outdir))
# data_tss.dt <- fread(sprintf("%s/qc_TSSenrichment.txt.gz",args$outdir)) %>%
# .[,.(value=mean(value)), by = c("sample","x","variable")]
to_plot_tss.dt <- data_tss.dt %>%
merge(unique(sample_metadata[,c("sample","stage")])) %>%
.[,.(value=mean(value)), by = c("sample","stage","x","variable")] %>%
.[variable=="normValue"]
p <- ggline(to_plot_tss.dt, x="x", y="value", plot_type="l") +
facet_wrap(~stage, scales="fixed") +
# scale_colour_manual(values=opts$stage.colors) +
# scale_x_continuous(breaks=seq(-2000,2000,1000)) +
labs(x="Distance from TSS (bp)", y="TSS enrichment (normalised)") +
theme(
axis.text.y = element_text(size=rel(0.65), color="black"),
axis.text.x = element_text(size=rel(0.6), color="black"),
# axis.text.x = element_blank(),
# axis.ticks.x = element_blank(),
axis.title = element_text(size=rel(0.75), color="black"),
legend.position = "none",
legend.title = element_blank()
)
pdf(file.path(args$outdir,"qc_TSSenrichment.pdf"), width=6, height=5)
print(p)
dev.off()
#####################################
## Plot Fragment size distribution ##
#####################################
# to.plot.fragmentsize <- plotFragmentSizes(ArchRProject, groupBy = "Sample", returnDF=T) %>%
# as.data.table %>% setnames("group","sample")
data_fragmentsize.dt <- opts$samples %>% map(function(i) {
plotFragmentSizes(
ArchRProj = ArchRProject[ArchRProject$Sample==i,],
groupBy = "Sample",
returnDF = TRUE
) %>% as.data.table %>% return
}) %>% rbindlist %>%
setnames("group","sample")
fwrite(data_fragmentsize.dt, sprintf("%s/qc_FragmentSizeDistribution.txt.gz",args$outdir))
# data_fragmentsize.dt <- fread(sprintf("%s/qc_FragmentSizeDistribution.txt.gz",args$outdir)) %>%
# .[,.(fragmentPercent=mean(fragmentPercent)), by = c("sample","fragmentSize")]
to_plot_fragmentsize.dt <- data_fragmentsize.dt %>%
merge(unique(sample_metadata[,c("sample","stage")])) %>%
.[,.(fragmentPercent=mean(fragmentPercent)), by = c("sample","stage","fragmentSize")] %>%
.[fragmentSize<=400]
p <- ggline(to_plot_fragmentsize.dt, x="fragmentSize", y="fragmentPercent", plot_type="l") +
facet_wrap(~stage, scales="fixed") +
# scale_x_continuous(breaks=seq(125,750,125)) +
# scale_colour_manual(values=opts$sample.colors) +
labs(x="Fragment Size (bp)", y="Percentage of fragments (%)") +
theme(
axis.text = element_text(size=rel(0.55)),
axis.title = element_text(size=rel(0.75)),
legend.position = "none",
legend.title = element_blank()
)
pdf(file.path(args$outdir,"qc_FragmentSizeDistribution.pdf"), width=8, height=4)
print(p)
dev.off()
##################################
## Plot histogram of QC metrics ##
##################################
to.plot <- sample_metadata %>%
.[!is.na(nFrags_atac)] %>%
.[,log_nFrags_atac:=log10(nFrags_atac)] %>%
melt(id.vars=c("sample","cell"), measure.vars=c("TSSEnrichment_atac","log_nFrags_atac","BlacklistRatio_atac"))
# melt(id.vars=c("sample","cell"), measure.vars=c("TSSEnrichment_atac","log_nFrags"))
# tmp <- data.table(
# variable = c("TSSEnrichment_atac", "nFrags_atac", "BlacklistRatio_atac"),
# value = c(args$min_tss_enrichment, args$min_number_fragments, args$max_blacklist_ratio)
# )
tmp <- data.table(
variable = c("TSSEnrichment_atac", "TSSEnrichment_atac", "log_nFrags_atac", "log_nFrags_atac","BlacklistRatio_atac"),
value = c(args$min_tss_enrichment, args$max_tss_enrichment, log10(args$min_number_fragments), log10(args$max_number_fragments),args$max_blacklist_ratio)
)
# p <- gghistogram(to.plot, x="value", fill="sample", bins=50) +
p <- gghistogram(to.plot, x="value", y="..density..", bins=70, fill="sample") +
geom_vline(aes(xintercept=value), linetype="dashed", data=tmp) +
facet_wrap(~variable, scales="free") +
theme(
axis.text = element_text(size=rel(0.8)),
axis.title.x = element_blank(),
legend.title = element_blank(),
legend.position = "top",
legend.text = element_text(size=rel(0.75))
)
pdf(sprintf("%s/qc_metrics_histogram.pdf",args$outdir), width=8, height=5)
print(p)
dev.off()
#############
## Call QC ##
#############
sample_metadata %>%
.[,pass_atacQC:=TSSEnrichment_atac>=args$min_tss_enrichment & TSSEnrichment_atac<=args$max_tss_enrichment &
nFrags_atac>=args$min_number_fragments & nFrags_atac<=args$max_number_fragments &
BlacklistRatio_atac<=args$max_blacklist_ratio] %>%
.[is.na(pass_atacQC),pass_atacQC:=FALSE]
print(sample_metadata[,mean(pass_atacQC,na.rm=T),by="sample"])
# print(sample_metadata[,mean(is.na(nFrags_atac)),by="sample"])
# Filter low quality cells that did not pass RNA QC
sample_metadata[pass_rnaQC==FALSE & nFrags_atac<=1e4,pass_atacQC:=FALSE]
# Save
fwrite(sample_metadata, file.path(args$outdir,"sample_metadata_after_qc.txt.gz"), quote=F, na="NA", sep="\t")
###########################################
## Plot QC statistics after QC filtering ##
###########################################
# Barplot of the fraction of cells that pass QC for each sample
to.plot <- sample_metadata %>%
.[,mean(pass_atacQC,na.rm=T),by=c("sample","stage")]
p <- ggbarplot(to.plot, x="sample", y="V1", fill="stage") +
scale_fill_manual(values=opts$stage.colors) +
labs(x="", y="Fraction of cells that pass ATAC QC") +
coord_cartesian(ylim=c(0,1)) +
theme(
legend.position = "none",
axis.text.y = element_text(colour="black",size=rel(0.8)),
axis.text.x = element_text(colour="black",size=rel(0.65), angle=20, hjust=1, vjust=1),
)
pdf(sprintf("%s/qc_metrics_barplot.pdf",args$outdir), width=6, height=5)
print(p)
dev.off()
# Boxplots of QC metrics
to.plot <- sample_metadata %>%
.[pass_atacQC==TRUE] %>%
.[nFrags_atac<=150000 & TSSEnrichment_atac<=27] %>% # remove massive outliers for plotting
.[,log_nFrags_atac:=log10(nFrags_atac)] %>%
# melt(id.vars=c("sample","cell"), measure.vars=c("TSSEnrichment_atac","log_nFrags","BlacklistRatio_atac"))
melt(id.vars=c("cell","sample","stage"), measure.vars=c("TSSEnrichment_atac","log_nFrags_atac"))
facet.labels <- c("log_nFrags_atac" = "Num. of fragments (log10)", "TSSEnrichment_atac" = "TSS enrichment")
## Box plot
p <- ggplot(to.plot, aes_string(x="sample", y="value", fill="stage")) +
geom_boxplot(outlier.shape=NA, coef=1) +
facet_wrap(~variable, scales="free_y", nrow=1, labeller = as_labeller(facet.labels)) +
scale_fill_manual(values=opts$stage.colors) +
theme_classic() +
theme(
axis.text.y = element_text(colour="black",size=rel(1)),
axis.text.x = element_text(colour="black",size=rel(0.65), angle=20, hjust=1, vjust=1),
axis.title.x = element_blank()
)
pdf(sprintf("%s/qc_metrics_boxplot.pdf",args$outdir), width=9, height=5)
print(p)
dev.off()