--- a +++ b/utils.py @@ -0,0 +1,70 @@ +import anndata +import scanpy as sc +import scipy as s +from scipy.sparse import csr_matrix, issparse + +def load_adata(adata_file, metadata_file = None, normalise = False, cells = None, cell_column = "cell", features = None, filter_lowly_expressed_genes = False, set_colors = False, keep_counts=False): + + adata = sc.read(adata_file) + + # Convert to sparse matrices + if not s.sparse.issparse(adata.X): + adata.X = csr_matrix(adata.X) + if len(adata.layers.keys())>0: + for i in list(adata.layers.keys()): + if not issparse(adata.layers[i]): + adata.layers[i] = csr_matrix(adata.layers[i]) + + if cells is not None: + tmp = np.mean(np.isin(cells,adata.obs.index.values)==False) + if tmp<1: print("%.2f%% of cells provided are not observed in the adata, taking the intersect..." % (100*tmp)) + cells = np.intersect1d(cells,adata.obs.index.values) + adata = adata[cells,:] + + if features is not None: + adata = adata[:,features] + + if metadata_file is not None: + metadata = pd.read_table(metadata_file, delimiter="\t", header=0).set_index(cell_column, drop=False) + metadata = metadata.loc[cells] + assert np.all(adata.obs.index.isin(metadata[cell_column])) + # assert np.all(metadata.cell.isin(adata.obs.index)) + assert metadata.shape[0] == adata.shape[0] + adata.obs = metadata#.reindex(adata.obs.index) + + if filter_lowly_expressed_genes: + sc.pp.filter_genes(adata, min_counts=10) + + if keep_counts: + adata.layers["raw"] = adata.X.copy() + + if normalise: + sc.pp.normalize_total(adata, target_sum=None, exclude_highly_expressed=False) + sc.pp.log1p(adata) + + if set_colors: + colPalette_celltypes = [opts["celltype_colors"][i.replace(" ","_").replace("/","_")] for i in sorted(np.unique(adata.obs['celltype']))] + adata.uns['celltype_colors'] = colPalette_celltypes + colPalette_stages = [opts["stage_colors"][i.replace(" ","_").replace("/","_")] for i in sorted(np.unique(adata.obs['stage']))] + adata.uns['stage_colors'] = colPalette_stages + + return adata + +def scale(X, x_min, x_max): + nom = (X - X.min(axis=0)) * (x_max - x_min) + denom = X.max(axis=0) - X.min(axis=0) + denom[denom == 0] = 1 + return x_min + nom / denom + + +# cmap = custom_div_cmap(11, mincol='g', midcol='0.9' ,maxcol='CornflowerBlue') +def custom_div_cmap(numcolors=11, name='custom_div_cmap', + mincol='blue', midcol='white', maxcol='red'): + """ + Default is blue to white to red with 11 colors. + Colors can be specified in any way understandable by matplotlib.colors.ColorConverter.to_rgb() + """ + + from matplotlib.colors import LinearSegmentedColormap + cmap = LinearSegmentedColormap.from_list(name=name, colors =[mincol, midcol, maxcol], N=numcolors) + return cmap \ No newline at end of file