[fe0e8b]: / rna / mapping / run / mapping_functions.R

Download this file

236 lines (204 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
doBatchCorrect <- function(counts, timepoints, samples, timepoint_order, sample_order, npc = 50, pc_override = NULL, BPPARAM = SerialParam()){
require(BiocParallel)
if(!is.null(pc_override)){
pca = pc_override
} else {
pca = irlba::prcomp_irlba(t(counts), n = npc)$x
rownames(pca) = colnames(counts)
}
if(length(unique(samples)) == 1){
return(pca)
}
#create nested list
pc_list <- lapply(unique(timepoints), function(tp){
sub_pc <- pca[timepoints == tp, , drop = FALSE]
sub_samp <- samples[timepoints == tp]
list <- lapply(unique(sub_samp), function(samp){
sub_pc[sub_samp == samp, , drop = FALSE]
})
names(list) <- unique(sub_samp)
return(list)
})
names(pc_list) <- unique(timepoints)
#arrange to match timepoint order
pc_list <- pc_list[order(match(names(pc_list), timepoint_order))]
pc_list <- lapply(pc_list, function(x){
x[order(match(names(x), sample_order))]
})
#perform corrections within list elements (i.e. within stages)
correct_list <- lapply(pc_list, function(x){
if(length(x) > 1){
#return(do.call(scran::fastMNN, c(x, "pc.input" = TRUE, BPPARAM = BPPARAM))$corrected)
return(do.call(reducedMNN, c(x, BPPARAM = BPPARAM))$corrected) # edited 09.02. because of "Error: 'fastMNN' is not an exported object from 'namespace:scran'", 17.02. changed to reducedMNN because otherwise it thinks PCA space is logcounts which would be utter bullcrap
} else {
return(x[[1]])
}
})
#perform correction over list
if(length(correct_list)>1){
#correct <- do.call(scran::fastMNN, c(correct_list, "pc.input" = TRUE, BPPARAM = BPPARAM))$corrected
correct <- do.call(reducedMNN, c(correct_list, BPPARAM = BPPARAM))$corrected # edited 09.02. because of "Error: 'fastMNN' is not an exported object from 'namespace:scran'", 17.02. changed to reducedMNN because otherwise it thinks PCA space is logcounts which would be utter bullcrap
} else {
correct <- correct_list[[1]]
}
correct <- correct[match(colnames(counts), rownames(correct)),]
return(correct)
}
getHVGs <- function(sce, block, min.mean = 1e-3){
decomp <- modelGeneVar(sce, block=block)
decomp <- decomp[decomp$mean > min.mean,]
decomp$FDR <- p.adjust(decomp$p.value, method = "fdr")
return(rownames(decomp)[decomp$p.value < 0.05])
}
getmode <- function(v, dist) {
tab <- table(v)
#if tie, break to shortest distance
if(sum(tab == max(tab)) > 1){
tied <- names(tab)[tab == max(tab)]
sub <- dist[v %in% tied]
names(sub) <- v[v %in% tied]
return(names(sub)[which.min(sub)])
} else {
return(names(tab)[which.max(tab)])
}
}
getcelltypes <- function(v, dist) {
tab <- table(v)
#if tie, break to shortest distance
if(sum(tab == max(tab)) > 1){
tied <- names(tab)[tab == max(tab)]
sub <- dist[v %in% tied]
names(sub) <- v[v %in% tied]
return(names(sub)[which.min(sub)])
} else {
return(names(tab)[which.max(tab)])
}
}
getMappingScore <- function(mapping){
out <- list()
celltypes_accrossK <- matrix(unlist(mapping$celltypes.mapped),
nrow=length(mapping$celltypes.mapped[[1]]),
ncol=length(mapping$celltypes.mapped))
cellstages_accrossK <- matrix(unlist(mapping$cellstages.mapped),
nrow=length(mapping$cellstages.mapped[[1]]),
ncol=length(mapping$cellstages.mapped))
out$celltype.score <- NULL
for (i in 1:nrow(celltypes_accrossK)){
p <- max(table(celltypes_accrossK[i,]))
index <- which(table(celltypes_accrossK[i,]) == p)
p <- p/length(mapping$celltypes.mapped)
out$celltype.score <- c(out$celltype.score,p)
}
out$cellstage.score <- NULL
for (i in 1:nrow(cellstages_accrossK)){
p <- max(table(cellstages_accrossK[i,]))
index <- which(table(cellstages_accrossK[i,]) == p)
p <- p/length(mapping$cellstages.mapped)
out$cellstage.score <- c(out$cellstage.score,p)
}
return(out)
}
get_meta <- function(correct_atlas, atlas_meta, correct_map, map_meta, k_map = 10){
knns <- BiocNeighbors::queryKNN(correct_atlas, correct_map, k = k_map, get.index = TRUE,
get.distance = FALSE)
#get closest k matching cells
k.mapped <- t(apply(knns$index, 1, function(x) atlas_meta$cell[x]))
celltypes <- t(apply(k.mapped, 1, function(x) atlas_meta$celltype[match(x, atlas_meta$cell)]))
stages <- t(apply(k.mapped, 1, function(x) atlas_meta$stage[match(x, atlas_meta$cell)]))
celltype.mapped <- apply(celltypes, 1, function(x) getmode(x, 1:length(x)))
stage.mapped <- apply(stages, 1, function(x) getmode(x, 1:length(x)))
out <- lapply(1:length(celltype.mapped), function(x){
list(cells.mapped = k.mapped[x,],
celltype.mapped = celltype.mapped[x],
stage.mapped = stage.mapped[x],
celltypes.mapped = celltypes[x,],
stages.mapped = stages[x,])
})
names(out) <- map_meta$cell
return(out)
}
mapWrap <- function(atlas_sce, atlas_meta, map_sce, map_meta, order = NULL, k = 30, npcs = 50, genes = NULL, return.list = FALSE){
message("Normalizing joint dataset...")
#easier to avoid directly binding sce objects as it is a lot more likely to have issues
sce_all <- SingleCellExperiment::SingleCellExperiment(
list(counts=Matrix::Matrix(cbind(counts(atlas_sce),counts(map_sce)),sparse=TRUE)))
#big_sce <- scater::normalize(sce_all)
#big_sce <- scater::logNormCounts(sce_all) # edited 09.02. because normalize deprecated in favour of logNormCounts
big_sce <- multiBatchNorm(sce_all, batch=c(atlas_meta$sample, map_meta$sample)) # edited 17.02. because now multibatchnorm exists
message("Done\n")
if (is.null(genes)) {
message("Genes not provided. Computing highly variable genes...")
hvgs <- getHVGs(big_sce, block=c(atlas_meta$sample, map_meta$sample))
message("Done\n")
} else {
hvgs <- genes
message(sprintf("%d Genes provided...",length(genes)))
}
message("Performing PCA...")
big_pca <- multiBatchPCA(big_sce,
batch=c(atlas_meta$sample, map_meta$sample),
subset.row = hvgs,
d = npcs,
preserve.single = TRUE,
assay.type = "logcounts")[[1]]
rownames(big_pca) <- colnames(big_sce)
atlas_pca <- big_pca[1:ncol(atlas_sce),]
map_pca <- big_pca[-(1:ncol(atlas_sce)),]
message("Done\n")
message("Batch effect correction for the atlas...")
order_df <- atlas_meta[!duplicated(atlas_meta$sample), c("stage", "sample")]
order_df$ncells <- sapply(order_df$sample, function(x) sum(atlas_meta$sample == x))
order_df$stage <- factor(order_df$stage,
levels = rev(c("E8.5","E8.25","E8.0","E7.75","E7.5","E7.25","mixed_gastrulation","E7.0","E6.75","E6.5")))
order_df <- order_df[order(order_df$stage, order_df$ncells, decreasing = TRUE),]
order_df$stage <- as.character(order_df$stage)
set.seed(42)
atlas_corrected <- doBatchCorrect(counts = logcounts(atlas_sce[hvgs,]),
timepoints = atlas_meta$stage,
samples = atlas_meta$sample,
timepoint_order = order_df$stage,
sample_order = order_df$sample,
pc_override = atlas_pca,
npc = npcs)
message("Done\n")
message("MNN mapping...")
correct <- reducedMNN(rbind(atlas_corrected, map_pca),
batch=c(rep("ATLAS", dim(atlas_meta)[1]), map_meta$sample),
merge.order=order)$corrected
atlas <- 1:nrow(atlas_pca)
correct_atlas <- correct[atlas,]
correct_map <- correct[-atlas,]
mapping <- get_meta(correct_atlas = correct_atlas,
atlas_meta = atlas_meta,
correct_map = correct_map,
map_meta = map_meta,
k_map = k)
message("Done\n")
if(return.list){
return(mapping)
}
message("Computing mapping scores...")
out <- list()
for (i in seq(from = 1, to = k)) {
out$closest.cells[[i]] <- sapply(mapping, function(x) x$cells.mapped[i])
out$celltypes.mapped[[i]] <- sapply(mapping, function(x) x$celltypes.mapped[i])
out$cellstages.mapped[[i]] <- sapply(mapping, function(x) x$stages.mapped[i])
}
multinomial.prob <- getMappingScore(out)
message("Done\n")
message("Writing output...")
out$correct_atlas <- correct_atlas
out$correct_map <- correct_map
ct <- sapply(mapping, function(x) x$celltype.mapped); is.na(ct) <- lengths(ct) == 0
st <- sapply(mapping, function(x) x$stage.mapped); is.na(st) <- lengths(st) == 0
cm <- sapply(mapping, function(x) x$cells.mapped[1]); is.na(cm) <- lengths(cm) == 0
out$mapping <- data.frame(
cell = names(mapping),
celltype.mapped = unlist(ct),
stage.mapped = unlist(st),
closest.cell = unlist(cm))
out$mapping <- cbind(out$mapping,multinomial.prob)
out$pca <- big_pca
message("Done\n")
return(out)
}